Log in

Dissecting Epigenetic Dysregulation of Primary Antibody Deficiencies

  • Published:
Journal of Clinical Immunology Aims and scope Submit manuscript

Abstract

Primary antibody deficiencies (PADs), the most prevalent inherited primary immunodeficiencies (PIDs), are associated with a wide range of genetic alterations (both monogenic or polygenic) in B cell-specific genes. However, correlations between the genotype and clinical manifestations are not evident in all cases indicating that genetic interactions, environmental and epigenetic factors may have a role in PAD pathogenesis. The recent identification of key defects in DNA methylation in common variable immunodeficiency as well as the multiple evidences on the role of epigenetic control during B cell differentiation, activation and during antibody formation highlight the importance of investing research efforts in dissecting the participation of epigenetic defects in this group of diseases. This review focuses on the role of epigenetic control in B cell biology which can provide clues for the study of potential novel pathogenic defects involved in PADs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. A. Fischer, Human primary immunodeficiency diseases: a perspective., Nat Immunol, vol. 5, no. 1, pp. 23–30, Jan. 2004.

  2. Al-Herz W, Bousfiha A, Casanova JL, Chatila T, Conley ME, Cunningham-Rundles C, Etzioni A, Franco JL, Gaspar HB, Holland SM, Klein C, Nonoyama S, Ochs HD, Oksenhendler E, Picard C, Puck JM, Sullivan K, Tang MLK Primary immunodeficiency diseases: An update on the classification from the International Union of immunological societies expert committee for primary immunodeficiency. Front Immunol. 2014;5:1–33.

    CAS  Google Scholar 

  3. Picard C, Al-Herz W, Bousfiha A, Casanova J-L, Chatila T, Conley ME, Cunningham-Rundles C, Etzioni A, Holland SM, Klein C, Nonoyama S, Ochs HD, Oksenhendler E, Puck JM, Sullivan KE, Tang MLK, Franco JL, Gaspar HB Primary immunodeficiency diseases: an update on the classification from the International Union Of Immunological Societies Expert Committee for primary immunodeficiency 2015. J Clin Immunol. 2015;35(8):696–726.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. A. Durandy, S. Kracker, and A. Fischer, Primary antibody deficiencies., Nat Rev Immunol, vol. 13, no. 7, pp. 519–533, Jul. 2013.

  5. Conley ME AK. Dobbs, D. M. Farmer, S. Kilic, K. Paris, S. Grigoriadou, E. coustan-smith, V. Howard, and D. Campana, primary B cell immunodeficiencies: comparisons and contrasts. Annu Rev Immunol. Jan. 2009;27:199–227.

  6. Y. Minegishi, E. Coustan-Smith, Y. H. Wang, M. D. Cooper, D. Campana, and M. E. Conley, Mutations in the human lambda5/14.1 gene result in B cell deficiency and agammaglobulinemia., J Exp Med., vol. 187, no. 1, pp. 71–77, Jan. 1998.

  7. L. Yel, Y. Minegishi, E. Coustan-Smith, R. H. Buckley, H. Trübel, L. M. Pachman, G. R. Kitchingman, D. Campana, J. Rohrer, and M. E. Conley, Mutations in the mu heavy-chain gene in patients with agammaglobulinemia., N Engl J Med, vol. 335, no. 20, pp. 1486–1493, Nov. 1996.

  8. Y. Minegishi, E. Coustan-Smith, L. Rapalus, F. Ersoy, D. Campana, and M. E. Conley, Mutations in Igalpha (CD79a) result in a complete block in B-cell development., J Clin Invest, vol. 104, no. 8, pp. 1115–1121, Oct. 1999.

  9. S. Ferrari, V. Lougaris, S. Caraffi, R. Zuntini, J. Yang, A. Soresina, A. Meini, G. Cazzola, C. Rossi, M. Reth, and A. Plebani, Mutations of the Igbeta gene cause agammaglobulinemia in man., J Exp Med., vol. 204, no. 9, pp. 2047–2051, Sep. 2007.

  10. Y. Minegishi, J. Rohrer, E. Coustan-Smith, H. M. Lederman, R. Pappu, D. Campana, A. C. Chan, and M. E. Conley, An essential role for BLNK in human B cell development., Science, vol. 286, no. 5446, pp. 1954–1957, Dec. 1999.

  11. M. E. Conley, D. Mathias, J. Treadaway, Y. Minegishi, and J. Rohrer, Mutations in btk in patients with presumed X-linked agammaglobulinemia., Am J Hum Genet, vol. 62, no. 5, pp. 1034–1043, May 1998.

  12. P. Revy, T. Muto, Y. Levy, A. Plebani, O. Sanal, N. Catalan, M. Forveille, A. Gennery, I. Tezcan, F. Ersoy, H. Kayserili, A. G. Ugazio, N. Brousse, M. Muramatsu, L. D. Notarangelo, K. Kinoshita, T. Honjo, A. Fischer, A. Durandy, C. Pediatrica, I. Medicina, and M. A. Nocivelli, Activation-Induced Cytidine Deaminase (AID) Deficiency Causes the Autosomal Recessive Form of the Hyper-IgM Syndrome (HIGM2 ), vol. 102, no. 2, pp. 565–575, 2000.

  13. E. López-Granados, R. Pérez de Diego, A. Ferreira Cerdán, G. Fontán Casariego, and M. C. García Rodríguez, A genotype-phenotype correlation study in a group of 54 patients with X-linked agammaglobulinemia., J Allergy Clin Immunol, vol. 116, no. 3, pp. 690–697, Sep. 2005.

  14. K. Liadaki, J. Sun, L. Hammarström, and Q. Pan-Hammarström, New facets of antibody deficiencies., Curr Opin Immunol, vol. 25, no. 5, pp. 629–638, Oct. 2013.

  15. A. Bird, Perceptions of epigenetics., Nature vol. 447, no. 7143, pp. 396–398, May 2007.

  16. T. H. Bestor, The DNA methyltransferases of mammals., Hum Mol Genet, vol. 9, no. 16, pp. 2395–2402, Oct. 2000.

  17. C. Vinson and R. Chatterjee, CG methylation., Epigenomics, vol. 4, no. 6, pp. 655–663, Dec. 2012.

  18. S. Eden and H. Cedar, Role of DNA methylation in the regulation of transcription., Curr Opin Genet Dev, vol. 4, no. 2, pp. 255–259, Apr. 1994.

  19. B. D. Strahl and C. D. Allis, The language of covalent histone modifications., Nature, vol. 403, no. 6765, pp. 41–45, Jan. 2000.

  20. Tessarz P, Kouzarides T Histone core modifications regulating nucleosome structure and dynamics. Nat Publ Gr. 2014;15(11):703–8.

    CAS  Google Scholar 

  21. E. Ballestar, Epigenetics lessons from twins: prospects for autoimmune disease., Clin Rev Allergy Immunol, vol. 39, no. 1, pp. 30–41, Aug. 2010.

  22. M. Symons, J. M. Derry, B. Karlak, S. Jiang, V. Lemahieu, F. Mccormick, U. Francke, and A. Abo, Wiskott-Aldrich syndrome protein, a novel effector for the GTPase CDC42Hs, is implicated in actin polymerization., Cell, vol. 84, no. 5, pp. 723–734, Mar. 1996.

  23. Bosticardo M, Marangoni F, Aiuti A, Villa A, Roncarolo MG Review article recent advances in understanding the pathophysiology of wiskott-aldrich syndrome. Blood. 2009;113(25):6288–95.

    Article  CAS  PubMed  Google Scholar 

  24. Buchbinder D, Nadeau K, Nugent D Monozygotic twin pair showing discordant phenotype for X-linked thrombocytopenia and wiskott-aldrich syndrome: A role for epigenetics? J Clin Immunol. 2011;31:773–7.

    Article  CAS  PubMed  Google Scholar 

  25. Ehrlich M The ICF syndrome, a DNA methyltransferase 3B deficiency and immunodeficiency disease. Clin Immunol. 2003;109:17–28.

    Article  CAS  PubMed  Google Scholar 

  26. H. Heyn, E. Vidal, S. Sayols, J. V Sanchez-Mut, S. Moran, I. Medina, J. Sandoval, L. Simó-Riudalbas, K. Szczesna, D. Huertas, S. Gatto, M. R. Matarazzo, J. Dopazo, and M. Esteller, Whole-genome bisulfite DNA sequencing of a DNMT3B mutant patient., Epigenetics, vol. 7, no. 6, pp. 542–550, Jun. 2012.

  27. Rodríguez-Cortez VC, del Pino-Molina L, Rodríguez-Ubreva J, Ciudad L, Gómez-Cabrero D, Company C, Urquiza JM, Tegnér J, Rodríguez-Gallego C, López-Granados E, Ballestar E Monozygotic twins discordant for common variable immunodeficiency reveal impaired DNA demethylation during naïve-to-memory B-cell transition. Nat Commun. Jun. 2015;6:7335.

  28. Traver D, Akashi K Lineage commitment and developmental plasticity in early lymphoid progenitor subsets. Adv Immunol. Jan. 2004;83:1–54.

  29. Blom B, Spits H Development of human lymphoid cells. Annu Rev Immunol. Jan. 2006;24:287–320.

  30. I. Györy, S. Boller, R. Nechanitzky, E. Mandel, S. Pott, E. Liu, and R. Grosschedl, Transcription factor Ebf1 regulates differentiation stage-specific signaling, proliferation, and survival of B cells., Genes Dev, vol. 26, no. 7, pp. 668–682, Apr. 2012.

  31. C. Cobaleda, A. Schebesta, A. Delogu, and M. Busslinger, Pax5: the guardian of B cell identity and function., Nat Immunol, vol. 8, no. 5, pp. 463–470, May 2007.

  32. Lee S-T, **ao Y, Muench MO, **ao J, Fomin ME, Wiencke JK, Zheng S, Dou X, de Smith A, Chokkalingam A, Buffler P, Ma X, Wiemels JL A global DNA methylation and gene expression analysis of early human B-cell development reveals a demethylation signature and transcription factor network. Nucleic Acids Res. 2012;40(22):11339–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. M. Almamun, B. T. Levinson, S. T. Gater, R. D. Schnabel, G. L. Arthur, J. W. Davis, and K. H. Taylor, Genome-wide DNA methylation analysis in precursor B-cells, Epigenetics, vol. 9, no. March, pp. 1588–1595, 2015.

  34. M. Kulis, A. Merkel, S. Heath, A. C. Queirós, R. P. Schuyler, G. Castellano, R. Beekman, E. Raineri, A. Esteve, G. Clot, N. Verdaguer-Dot, M. Duran-Ferrer, N. Russiñol, R. Vilarrasa-Blasi, S. Ecker, V. Pancaldi, D. Rico, L. Agueda, J. Blanc, D. Richardson, L. Clarke, A. Datta, M. Pascual, X. Agirre, F. Prosper, D. Alignani, B. Paiva, G. Caron, T. Fest, M. O. Muench, M. E. Fomin, S.-T. Lee, J. L. Wiemels, A. Valencia, M. Gut, P. Flicek, H. G. Stunnenberg, R. Siebert, R. Küppers, I. G. Gut, E. Campo, and J. I. Martín-Subero, Whole-genome fingerprint of the DNA methylome during human B cell differentiation., Nat Genet, vol. 47, no. 7, pp. 746–756, Jul. 2015.

  35. C. H. Bassing, W. Swat, and F. W. Alt, The mechanism and regulation of chromosomal V(D)J recombination., Cell, vol. 109 Suppl, pp. S45–S55, Apr. 2002.

  36. G. D. Yancopoulos and F. W. Alt, Developmentally controlled and tissue-specific expression of unrearranged VH gene segments. Cell. 1985. 40: 271-281., J. Immunol., vol. 188, no. 1, pp. 10–20, Jan. 2012.

  37. Selimyan R, Gerstein RM, Ivanova I, Precht P, Subrahmanyam R, Perlot T, Alt FW, Sen R Localized DNA Demethylation at Recombination Intermediates during Immunoglobulin Heavy Chain Gene Assembly,. PLoS Biol. 2013;11(1).

  38. Stanhope-Baker P, Hudson KM, Shaffer AL, Constantinescu A, Schlissel MS Cell type-specific chromatin structure determines the targeting of V(D)J recombinase activity in vitro. Cell. 1996;85(D):887–97.

    Article  CAS  PubMed  Google Scholar 

  39. Goldmit M, Ji Y, Skok J, Roldan E, Jung S, Cedar H, Bergman Y Epigenetic ontogeny of the Igk locus during B cell development. Nat Immunol. 2005;6(2):198–203.

    Article  CAS  PubMed  Google Scholar 

  40. Chowdhury D, Sen R Stepwise activation of the immunoglobulin mu heavy chain gene locus. EMBO J. 2001;20(22):6394–403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. K. Johnson, C. Angelin-duclos, S. Park, and K. L. Calame, Changes in Histone Acetylation Are Associated with Differences in Accessibility of V H Gene Segments to V-DJ Recombination during B-Cell Ontogeny and Development Changes in Histone Acetylation Are Associated with Differences in Accessibility of V H Gene S, vol. 23, no. 7, pp. 2438–2450, 2003.

  42. K. Johnson, C. Angelin-Duclos, S. Park, and K. L. Calame, Changes in histone acetylation are associated with differences in accessibility of V(H) gene segments to V-DJ recombination during B-cell ontogeny and development., Mol Cell Biol, vol. 23, no. 7, pp. 2438–2450, Apr. 2003.

  43. Nightingale KP, Baumann M, Eberharter A, Mamais A, Becker PB, Boyes J Acetylation increases access of remodelling complexes to their nucleosome targets to enhance initiation of V(D)J recombination. Nucleic Acids Res. 2007;35(18):6311–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ramón-Maiques S, Kuo AJ, Carney D, Matthews AGW, Oettinger M a, Gozani O, Yang W The plant homeodomain finger of RAG2 recognizes histone H3 methylated at both lysine-4 and arginine-2. Proc Natl Acad Sci U S A. 2007;104(48):18993–8.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Y. Bergman and H. Cedar, Epigenetic control of recombination in the immune system., Semin Immunol, vol. 22, no. 6, pp. 323–329, Dec. 2010.

  46. Matthews AGW, Kuo AJ, Ramón-Maiques S, Han S, Champagne KS, Ivanov D, Gallardo M, Carney D, Cheung P, Ciccone DN, Walter KL, Utz PJ, Shi Y, Kutateladze TG, Yang W, Gozani O, Oettinger MA RAG2 PHD finger couples histone H3 lysine 4 trimethylation with V(D)J recombination. Nature. Nov. 2007;450(7172):1106–10.

  47. Su I-H, Basavaraj A, Krutchinsky AN, Hobert O, Ullrich A, Chait BT, Tarakhovsky A Ezh2 controls B cell development through histone H3 methylation and Igh rearrangement. Nat Immunol. 2003;4(2):124–31.

    Article  CAS  PubMed  Google Scholar 

  48. T. W. LeBien and T. F. Tedder, B lymphocytes: how they develop and function., Blood, vol. 112, no. 5, pp. 1570–1580, Sep. 2008.

  49. P. Nieuwenhuis and D. Opstelten, Functional anatomy of germinal centers., Am J Anat, vol. 170, no. 3, pp. 421–435, Jul. 1984.

  50. Victora GD, Nussenzweig MC Germinal centers. Annu Rev Immunol. Jan. 2012;30:429–57.

  51. U. Klein and R. Dalla-Favera, Germinal centres: role in B-cell physiology and malignancy., Nat Rev Immunol, vol. 8, no. 1, pp. 22–33, Jan. 2008.

  52. A. L. Shaffer, X. Yu, Y. He, J. Boldrick, E. P. Chan, and L. M. Staudt, BCL-6 represses genes that function in lymphocyte differentiation, inflammation, and cell cycle control., Immunity, vol. 13, no. 2, pp. 199–212, Aug. 2000.

  53. Dhordain P, Lin RJ, Quief S, Lantoine D, Kerckaert JP, Evans RM, Albagli O The LAZ3(BCL-6) oncoprotein recruits a SMRT/mSIN3A/histone deacetylase containing complex to mediate transcriptional repression. Nucleic Acids Res. 1998;26(20):4645–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. C. Lemercier, M.-P. Brocard, F. Puvion-Dutilleul, H.-Y. Kao, O. Albagli, and S. Khochbin, Class II histone deacetylases are directly recruited by BCL6 transcriptional repressor., J Biol Chem, vol. 277, no. 24, pp. 22045–22052, Jun. 2002.

  55. Caganova M, Carrisi C, Varano G, Mainoldi F, Zanardi F, Germain PL, George L, Alberghini F, Ferrarini L, Talukder AK, Ponzoni M, Testa G, Nojima T, Doglioni C, Kitamura D, Toellner KM, Su IH, Casola S Germinal center dysregulation by histone methyltransferase EZH2 promotes lymphomagenesis. J Clin Invest. 2013;123(12):5009–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. A. Y. Lai, D. Mav, R. Shah, S. A. Grimm, D. Phadke, K. Hatzi, A. Melnick, C. Geigerman, S. E. Sobol, D. L. Jaye, and P. A. Wade, DNA methylation profiling in human B cells reveals immune regulatory elements and epigenetic plasticity at Alu elements during B-cell activation., Genome Res, vol. 23, no. 12, pp. 2030–2041, Dec. 2013.

  57. R. Shaknovich, L. Cerchietti, L. Tsikitas, M. Kormaksson, S. De, M. E. Figueroa, G. Ballon, S. N. Yang, N. Weinhold, M. Reimers, T. Clozel, K. Luttrop, T. J. Ekstrom, J. Frank, A. Vasanthakumar, L. a Godley, F. Michor, O. Elemento, and A. Melnick, DNA methyltransferase 1 and DNA methylation patterning contribute to germinal center B-cell differentiation., Blood, vol. 118, no. 13, pp. 3559–3569, Sep. 2011.

  58. Matthews AJ, Zheng S, DiMenna LJ, Chaudhuri J Regulation of immunoglobulin class-switch recombination: choreography of noncoding transcription, targeted DNA deamination, and long-range DNA repair. Adv Immunol. Jan. 2014;122:1–57.

  59. Muramatsu M, Kinoshita K, Fagarasan S, Yamada S, Shinkai Y, Honjo T Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA Editing enzyme. Cell. Sep. 2000;102(5):553–63.

  60. Fraenkel S, Mostoslavsky R, Novobrantseva TI, Pelanda R, Chaudhuri J, Esposito G, Jung S, Alt FW, Rajewsky K, Cedar H, Bergman Y Allelic ‘Choice’ Governs Somatic Hypermutation in Vivo at the Immunoglobulin Kappa-Chain Locus. Nat Immunol. Jul. 2007;8(7):715–22.

  61. C. J. Woo, A. Martin, and M. D. Scharff, Induction of somatic hypermutation is associated with modifications in immunoglobulin variable region chromatin., Immunity, vol. 19, no. 4, pp. 479–489, Oct. 2003.

  62. N. a Begum, A. Stanlie, M. Nakata, H. Akiyama, and T. Honjo, The histone chaperone Spt6 is required for activation-induced cytidine deaminase target determination through H3K4me3 regulation., J Biol Chem, vol. 287, no. 39, pp. 32415–32429, Sep. 2012.

  63. Odegard VH, Kim ST, Anderson SM, Shlomchik MJ, Schatz DG Histone modifications associated with somatic hypermutation. Immunity. 2005;23:101–10.

    Article  CAS  PubMed  Google Scholar 

  64. Borchert GM, Holton NW, Edwards KA, Vogel LA, Larson ED Histone H2A and H2B are monoubiquitinated at AID-targeted loci. PLoS One. 2010;5(7).

  65. Li G, Zan H, Xu Z, Casali P Epigenetics of the antibody response. Trends Immunol. 2013;34:460–70.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Jeevan-Raj BP, Robert I, Heyer V, Page A, Wang JH, Cammas F, Alt FW, Losson R, Reina-San-Martin B Epigenetic tethering of AID to the donor switch region during immunoglobulin class switch recombination. J Exp Med. 2011;208(8):1649–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. L. Wang, N. Whang, R. Wuerffel, and A. L. Kenter, AID-dependent histone acetylation is detected in immunoglobulin S regions., J Exp Med., vol. 203, no. 1, pp. 215–226, Jan. 2006.

  68. Z. Xu, Z. Fulop, G. Wu, E. J. Pone, J. Zhang, T. Mai, L. M. Thomas, A. Al-Qahtani, C. A White, S.-R. Park, P. Steinacker, Z. Li, J. Yates, B. Herron, M. Otto, H. Zan, H. Fu, and P. Casali, 14–3-3 adaptor proteins recruit AID to 5′-AGCT-3′-rich switch regions for class switch recombination., Nat Struct Mol Biol, vol. 17, no. 9, pp. 1124–1135, Sep. 2010.

  69. J. Yu, C. Angelin-Duclos, J. Greenwood, J. Liao, and K. Calame, Transcriptional repression by blimp-1 (PRDI-BF1) involves recruitment of histone deacetylase., Mol Cell Biol, vol. 20, no. 7, pp. 2592–2603, Apr. 2000.

  70. I. Gyory, J. Wu, G. Fejér, E. Seto, and K. L. Wright, PRDI-BF1 recruits the histone H3 methyltransferase G9a in transcriptional silencing., Nat Immunol, vol. 5, no. 3, pp. 299–308, Mar. 2004.

  71. Su S-T, Ying H-Y, Chiu Y-K, Lin F-R, Chen M-Y, Lin K-I Involvement of histone demethylase LSD1 in Blimp-1-mediated gene repression during plasma cell differentiation. Mol Cell Biol. 2009;29(6):1421–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by grant SAF2014-55942-R from the Instituto de Salud Carlos III, organisms ascribed to the Ministerio de Economía y Competitividad and cofunded by FEDER funds/ European Regional Development Fund (ERDF) - a way to build Europe.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esteban Ballestar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodríguez-Cortez, V.C., del Pino-Molina, L., Rodríguez-Ubreva, J. et al. Dissecting Epigenetic Dysregulation of Primary Antibody Deficiencies. J Clin Immunol 36 (Suppl 1), 48–56 (2016). https://doi.org/10.1007/s10875-016-0267-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10875-016-0267-4

Keywords

Navigation