Log in

Tunable paramagnetic relaxation enhancements by [Gd(DPA)3]3− for protein structure analysis

  • Article
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

Paramagnetic relaxation enhancements (PRE) present a powerful source of structural information in nuclear magnetic resonance (NMR) studies of proteins and protein–ligand complexes. In contrast to conventional PRE reagents that are covalently attached to the protein, the complex between gadolinium and three dipicolinic acid (DPA) molecules, [Gd(DPA)3]3−, can bind to proteins in a non-covalent yet site-specific manner. This offers straightforward access to PREs that can be scaled by using different ratios of [Gd(DPA)3]3− to protein, allowing quantitative distance measurements for nuclear spins within about 15 Å of the Gd3+ ion. Such data accurately define the metal position relative to the protein, greatly enhancing the interpretation of pseudocontact shifts induced by [Ln(DPA)3]3− complexes of paramagnetic lanthanide (Ln3+) ions other than gadolinium. As an example we studied the quaternary structure of the homodimeric GCN4 leucine zipper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Arnesano F, Banci L, Piccioli M (2005) NMR structures of paramagnetic metalloproteins. Quart Rev Biophys 38:167–219

    Article  Google Scholar 

  • Baker RT, Catanzariti AM, Karunasekara Y, Soboleva TA, Sharwood R, Whitney S, Board PG (2005) Using deubiquitylating enzymes as research tools. Methods Enzymol 398:540–554

    Article  Google Scholar 

  • Balayssac S, Bertini I, Bhaumik A, Lelli M, Luchinat C (2008) Paramagnetic shifts in solid-state NMR of proteins to elicit structural information. Proc Natl Acad Sci 105:17284–17289

    Article  ADS  Google Scholar 

  • Benmelouka M, Borel A, Moriggi L, Helm L, Merbach AE (2007) Design of Gd(III)-based magnetic resonance imaging contrast agents: static and transient zero-field splitting contributions to the electronic relaxation and their impact on relaxivity. J Phys Chem B 111:832–840

    Article  Google Scholar 

  • Bertini I, Luchinat C, Parigi G, Pierattelli R (2008) NMR spectroscopy of paramagnetic metalloproteins. Dalton Trans 2008:3782–3790

    Article  Google Scholar 

  • Bloembergen N, Morgan LO (1961) Proton relaxation times in paramagnetic solutions. Effects of electron spin relaxation. J Chem Phys 34:842–850

    Article  ADS  Google Scholar 

  • Clore GM, Iwahara J (2009) Theory, practice, and applications of paramagnetic relaxation enhancement for the characterization of transient low-population states of biological macromolecules and their complexes. Chem Rev 109:4108–4139

    Article  Google Scholar 

  • Farrow NE, Muhandiram R, Singer AU, Pascal SM, Kay CM, Gish G, Shoelson SE, Pawson T, Forman-Kay JD, Kay LE (1994) Backbone dynamics of a free and a phosphopeptide-complexed Src homology 2 domain studied by 15N NMR relaxation. Biochemistry 33:5984–6003

    Article  Google Scholar 

  • Ferretti JA, Weiss GH (1989) One-dimensional nuclear Overhauser effects and peak intensity measurements. Meth Enzymol 176:3–11

    Article  Google Scholar 

  • Guéron M (1975) Nuclear relaxation in macromolecules by paramagnetic ions–novel mechanism. J Magn Reson 19:249–273

    Google Scholar 

  • Iwahara J, Tang C, Clore GM (2007) Practical aspects of 1H transverse paramagnetic relaxation enhancement measurements on macromolecules. J Magn Reson 184:185–195

    Article  ADS  Google Scholar 

  • Junius FK, Mackay JP, Bubb WA, Jensen SA, Weiss AS, King GF (1995) Nuclear magnetic resonance characterization of the Jun leucine-zipper domain–unusual properties of coiled-coil interfacial polar residues. Biochemistry 34:6164–6174

    Article  Google Scholar 

  • Koradi R, Billeter M, Wüthrich K (1996) MOLMOL: a program for display and analysis of macromolecular structures. J Mol Graphics 14:51–55

    Article  Google Scholar 

  • Kowalewski J, Nordenskiöld L, Benetis N, Westlund PO (1985) Theory of nuclear-spin relaxation in paramagnetic systems in solution. Prog NMR Spectr 17:141–185

    Article  Google Scholar 

  • Mackay JP, Shaw GL, King GF (1996) Backbone dynamics of the c-Jun leucine zipper: 15N NMR relaxation studies. Biochemistry 35:4867–4877

    Article  Google Scholar 

  • Man B, Su XC, Liang H, Simonsen S, Huber T, Messerle BA, Otting G (2010) 3-Mercapto-2,6-pyridinedicarboxylic acid: a small lanthanide-binding tag for protein studies by NMR spectroscopy. Chem Eur J 16:3827–3832

    Article  Google Scholar 

  • Matousek WM, Ciani B, Fitch CA, Garcia-Moreno B, Kammerer RA, Alexandrescu AT (2007) Electrostatic contributions to the stability of the GCN4 leucine zipper structure. J Mol Biol 374:206–219

    Article  Google Scholar 

  • O’Donoghue SI, King GF, Nilges M (1996) Calculation of symmetric multimer structures from NMR data using a priori knowledge of the monomer structure, co-monomer restraints, and interface map**: the case of leucine zippers. J Biomol NMR 8:193–206

    Google Scholar 

  • O’Shea EK, Rutkowski R, Kim PS (1989) Evidence that the leucine zipper is a coiled coil. Science 243:538–542

    Article  ADS  Google Scholar 

  • O’Shea EK, Klemm JD, Kim PS, Alber T (1991) X-ray structure of the GCN4 leucine zipper, a 2-stranded, parallel coiled coil. Science 254:539–544

    Article  ADS  Google Scholar 

  • Oas TG, McIntosh LP, O’Shea EK, Dahlquist FW, Kim PS (1990) Secondary structure of a leucine zipper determined by nuclear magnetic resonance spectroscopy. Biochemistry 29:2891–2894

    Article  Google Scholar 

  • Otting G (2008) Prospects for lanthanides in structural biology by NMR. J Biomol NMR 42:1–9

    Article  Google Scholar 

  • Pintacuda G, Otting G (2002) Identification of protein surfaces by NMR measurements with a paramagnetic Gd(III) chelate. J Am Chem Soc 124:372–373

    Article  Google Scholar 

  • Pintacuda G, Kaikkonen A, Otting G (2004a) Modulation of the distance dependence of paramagnetic relaxation enhancements by CSAxDSA cross-correlation. J Magn Reson 171:233–243

    Article  ADS  Google Scholar 

  • Pintacuda G, Moshref A, Leonchiks A, Sharipo A, Otting G (2004b) Site-specific labelling with a metal chelator for protein-structure refinement. J Biomol NMR 29:351–361

    Article  Google Scholar 

  • Pintacuda G, John M, Su XC, Otting G (2007) NMR structure determination of protein-ligand complexes by lanthanide labeling. Acc Chem Res 40:206–212

    Article  Google Scholar 

  • Schmitz C, Stanton-Cook MJ, Su XC, Otting G, Huber T (2008) Numbat: an interactive software tool for fitting Δχ-tensors to molecular coordinates using pseudocontact shifts. J Biomol NMR 41:179–189

    Article  Google Scholar 

  • Solomon I (1955) Relaxation processes in a system of two spins. Phys Rev 99:559–565

    Article  ADS  Google Scholar 

  • Su XC, Otting G (2010) Paramagnetic labelling of proteins and oligonucleotides for NMR. J Biomol NMR 46:101–112

    Article  Google Scholar 

  • Su XC, Liang H, Loscha KV, Otting G (2009) [Ln(DPA)3]3− is a convenient paramagnetic shift reagent for protein NMR studies. J Am Chem Soc 131:10352–10353

    Article  Google Scholar 

  • Ubbink M (2009) The courtship of proteins: understanding the encounter complex. FEBS Lett 583:1060–1066

    Article  Google Scholar 

  • Vega AJ, Fiat D (1976) Nuclear relaxation processes of paramagnetic complexes. The slow-motion case. Mol Phys 31:347–355

    Article  ADS  Google Scholar 

  • Vold RL, Waugh JS, Klein MP, Phelps DE (1968) Measurement of spin relaxation in complex systems. J Chem Phys 48:3831–3832

    Article  ADS  Google Scholar 

  • Zweckstetter M, Schnell JR, Chou JJ (2005) Determination of the packing mode of the coiled-coil domain of cGMP-dependent protein kinase Iα in solution using charge-predicted dipolar couplings. J Am Chem Soc 127:11918–11919

    Article  Google Scholar 

Download references

Acknowledgments

Financial support by the Australian Research Council is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gottfried Otting.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1169 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yagi, H., Loscha, K.V., Su, XC. et al. Tunable paramagnetic relaxation enhancements by [Gd(DPA)3]3− for protein structure analysis. J Biomol NMR 47, 143–153 (2010). https://doi.org/10.1007/s10858-010-9416-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-010-9416-x

Keywords

Navigation