Log in

The use of calcium phosphate-based biomaterials in implant dentistry

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Since calcium phosphates (CaPs) were first proposed, a wide variety of formulations have been developed and continuously optimized, some of which (e.g. calcium phosphate cements, CPCs) have been successfully commercialized for clinical applications. These CaP-based biomaterials have been shown to be very attractive bone substitutes and efficient drug delivery vehicles across diverse biomedical applications. In this article, CaP biomaterials, principally CPCs, are addressed as alternatives/complements to autogenous bone for grafting in implant dentistry and as coating materials for enhancing the osteoinductivity of titanium implants, highlighting their performance benefits simultaneously as carriers for growth factors and as scaffolds for cell proliferation, differentiation and penetration. Different strategies for employing CaP biomaterials in dental implantology aim to ultimately reach the same goal, namely to enhance the osseointegration process for dental implants in the context of immediate loading and to augment the formation of surrounding bone to guarantee long-term success.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BMP(s):

Bone morphogenetic protein(s)

CaP(s):

Calcium phosphate(s)

CPC(s):

Calcium phosphate cement(s)

DPBS:

Dulbecco’s phosphate buffered saline

FGF:

Fibroblast growth factor

HA:

Hydroxyapatite

PLA:

Polylactic acid

PRP:

Platelet-rich plasma

TCP:

Tricalcium phosphate

TGF(s):

Transforming growth factor(s)

References

  1. Gaetti-Jardim EC, Santiago-Junior JF, Goiato MC, Pellizer EP, Magro-Filho O, Jardim EG Jr. Dental implants in patients with osteoporosis: a clinical reality? J Craniofac Surg. 2011;22:1111–3.

    Article  Google Scholar 

  2. Chiapasco M, Casentini P, Zaniboni M. Bone augmentation procedures in implant dentistry. Int J Oral Maxillofac Implant. 2009;24 Suppl:237–59.

    Google Scholar 

  3. Gapski R, Wang HL, Mascarenhas P, Lang NP. Critical review of immediate implant loading. Clin Oral Implants Res. 2003;14:515–27.

    Article  Google Scholar 

  4. Liu Y, de Groot K, Hunziker EB. Osteoinductive implants: the mise-en-scène for drug-bearing biomimetic coatings. Ann Biomed Eng. 2004;32:398–406.

    Article  CAS  Google Scholar 

  5. Hallman M, Thor A. Bone substitutes and growth factors as an alternative/complement to autogenous bone for grafting in implant dentistry. Periodontol 2000. 2008;47:172–92.

    Article  Google Scholar 

  6. Liu X, Chub PK, Ding C. Surface modification of titanium, titanium alloys and related materials for biomedical applications. Mater Sci Eng Rep. 2004;47:49–121.

    Article  Google Scholar 

  7. Esposito M, Grusovin MG, Coulthard P, Thomsen P, Worthington HV. A 5 year follow-up comparative analysis of the efficacy of various osseointegrated dental implant systems: a systematic review of randomized controlled clinical trials. Int J Oral Maxillofac Implants. 2005;20:557–68.

    Google Scholar 

  8. Esposito M, Grusovin MG, Coulthard P, Worthington HV. The efficacy of various bone augmentation procedures for dental implants: a Cochrane systematic review of randomized controlled clinical trials. Int J Oral Maxillofac Implants. 2006;21:696–710.

    Google Scholar 

  9. Zhang Y, Song J, Shi B, Wang Y, Chen X, Huang C, Yang X, Xu D, Cheng X, Chen X. Combination of scaffold and adenovirus vectors expressing bone morphogenetic protein-7 for alveolar bone regeneration at dental implant defects. Biomaterials. 2007;28:4635–42.

    Article  CAS  Google Scholar 

  10. Le Guéhennec L, Soueidan A, Layrolle P, Amouriq Y. Surface treatments of titanium dental implants for rapid osseointegration. Dent Mater. 2007;23:844–54.

    Article  Google Scholar 

  11. Clark PA, Moioli EK, Sumner DR, Mao JJ. Porous implants as drug delivery vehicles to augment host tissue integration. FASEB J. 2008;22:1684–93.

    Article  CAS  Google Scholar 

  12. de Jonge LT, Leeuwenburgh SC, Wolke JG, Jansen JA. Organic-inorganic surface modifications for titanium implant surfaces. Pharm Res. 2008;25:2357–69.

    Article  CAS  Google Scholar 

  13. Paital SR, Dahotre NB. Calcium phosphate coatings for bio-implant applications: materials, performance factors, and methodologies. Mater Sci Eng R. 2009;66:1–70.

    Article  Google Scholar 

  14. Aghaloo TL, Moy PK. Which hard tissue augmentation techniques are the most successful in furnishing bony support for implant placement? Int J Oral Maxillofac Implants. 2007;22:S49–70.

    Google Scholar 

  15. Chen FM, ** Y. Periodontal tissue engineering and regeneration: current approaches and expanding opportunities. Tissue Eng Part B Rev. 2010;16:219–55.

    Article  CAS  Google Scholar 

  16. Hanes PJ. Bone replacement grafts for the treatment of periodontal intrabony defects. Oral Maxillofac Surg Clin N Am. 2007;19:499–512.

    Article  Google Scholar 

  17. Le Nihouannen D, Daculsi G, Saffarzadeh A, Gauthier O, Delplace S, Pilet P, Layrolle P. Ectopic bone formation by microporous calcium phosphate ceramic particles in sheep muscles. Bone. 2005;36:1086–93.

    Article  CAS  Google Scholar 

  18. Le Nihouannen D, Guehennec LL, Rouillon T, Pilet P, Bilban M, Layrolle P, Daculsi G. Micro-architecture of calcium phosphate granules and fibrin glue composites for bone tissue engineering. Biomaterials. 2006;27:2716–22.

    Article  CAS  Google Scholar 

  19. Le Nihouannen D, Saffarzadeh A, Gauthier O, Moreau F, Pilet P, Spaethe R, Layrolle P, Daculsi G. Bone tissue formation in sheep muscles induced by a biphasic calcium phosphate ceramic and fibrin glue composite. J Mater Sci Mater Med. 2008;19:667–75.

    Article  Google Scholar 

  20. Saldaña L, Sánchez-Salcedo S, Izquierdo-Barba I, Bensiamar F, Munuera L, Vallet-Regí M, Vilaboa N. Calcium phosphate-based particles influence osteogenic maturation of human mesenchymal stem cells. Acta Biomater. 2009;5:1294–305.

    Article  Google Scholar 

  21. Ergun C, Liu H, Webster TJ. Osteoblast adhesion on novel machinable calcium phosphate/lanthanum phosphate composites for orthopedic applications. J Biomed Mater Res A. 2009;89:727–33.

    Google Scholar 

  22. Lee SB, Jung UW, Choi Y, Jamiyandorj O, Kim CS, Lee YK, Chai JK, Choi SH. Investigation of bone formation using calcium phosphate glass cement in beagle dogs. J Periodontal Implant Sci. 2010;40:125–31.

    Article  Google Scholar 

  23. Cheng L, Ye F, Yang R, Lu X, Shi Y, Li L, Fan H, Bu H. Osteoinduction of hydroxyapatite/beta-tricalcium phosphate bioceramics in mice with a fractured fibula. Acta Biomater. 2010;6:1569–74.

    Article  CAS  Google Scholar 

  24. Jegoux F, Aguado E, Cognet R, Malard O, Moreau F, Daculsi G, Goyenvalle E. Alveolar ridge augmentation in irradiated rabbit mandibles. J Biomed Mater Res A. 2010;93:1519–26.

    Google Scholar 

  25. Bateman J, Intini G, Margarone J, Goodloe S, Bush P, Lynch SE, Dziak R. Platelet-derived growth factor enhancement of two alloplastic bone matrices. J Periodontol. 2005;76:1833–41.

    Article  CAS  Google Scholar 

  26. Mooren RE, Dankers AC, Merkx MA, Bronkhorst EM, Jansen JA, Stoelinga PJ. The effect of platelet-rich plasma on early and late bone healing using a mixture of particulate autogenous cancellous bone and Bio-Oss: an experimental study in goats. Int J Oral Maxillofac Surg. 2010;39:371–8.

    Article  CAS  Google Scholar 

  27. Chen FM, Shelton RM, ** Y, Chapple IL. Localized delivery of growth factors for periodontal tissue regeneration: role, strategies and perspectives. Med Res Rev. 2009;29:472–513.

    Article  CAS  Google Scholar 

  28. Chen FM, Zhang M, Wu ZF. Toward delivery of multiple growth factors in tissue engineering. Biomaterials. 2010;31:6279–380.

    Article  CAS  Google Scholar 

  29. Lee K, Silva EA, Mooney DJ. Growth factor delivery-based tissue engineering: general approaches and a review of recent developments. J R Soc Interface. 2011;8:153–70.

    Article  CAS  Google Scholar 

  30. Liu Y, Huse RO, de Groot K, Buser D, Hunziker EB. Delivery mode and efficacy of BMP-2 in association with implants. J Dent Res. 2007;86:84–9.

    Article  CAS  Google Scholar 

  31. Daculsi G. Biphasic calcium phosphate concept applied to artificial bone, implant coating and injectable bone substitute. Biomaterials. 1998;19:1473–8.

    Article  CAS  Google Scholar 

  32. Suzuki O, Kamakura S, Katagiri T. Surface chemistry and biological responses to synthetic octacalcium phosphate. J Biomed Mater Res B Appl Biomater. 2006;77:201–12.

    Google Scholar 

  33. Bohner M, Gbureck U, Barralet JE. Technological issues for the development of more efficient calcium phosphate bone cements: a critical assessment. Biomaterials. 2005;26:6423–9.

    Article  CAS  Google Scholar 

  34. Ginebra MP, Traykova T, Planell JA. Calcium phosphate cements as bone drug delivery systems: a review. J Control Release. 2006;113:102–10.

    Article  CAS  Google Scholar 

  35. Vallet-Regí M. Revisiting ceramics for medical applications. Dalton Trans. 2006;28:5211–20.

    Article  Google Scholar 

  36. Chow LC. Next generation calcium phosphate-based biomaterials. Dent Mater J. 2009;28:1–10.

    Article  CAS  Google Scholar 

  37. Aral A, Yalçin S, Karabuda ZC, Anil A, Jansen JA, Mutlu Z. Injectable calcium phosphate cement as a graft material for maxillary sinus augmentation: an experimental pilot study. Clin Oral Implants Res. 2008;19:612–7.

    Article  Google Scholar 

  38. Arisan V, Ozdemir T, Anil A, Jansen JA, Ozer K. Injectable calcium phosphate cement as a bone-graft material around peri-implant dehiscence defects: a dog study. Int J Oral Maxillofac Implants. 2008;23:1053–62.

    Google Scholar 

  39. Arisan V, Anil A, Wolke JG, Ozer K. The effect of injectable calcium phosphate cement on bone anchorage of titanium implants: an experimental feasibility study in dogs. Int J Oral Maxillofac Surg. 2010;39:463–8.

    Article  CAS  Google Scholar 

  40. Markovic M, Takagi S, Chow LC. Formation of macropores in calcium phosphate cements through the use of mannitol crystals. Key Eng Mater. 2001;192–195:773–6.

    Article  Google Scholar 

  41. Takagi S, Chow LC. Formation of macropores in calcium phosphate cement implants. J Mater Sci Mater Med. 2002;12:135–9.

    Article  Google Scholar 

  42. Barralet JE, Grover L, Gaunt T, Wright AJ, Gibson IR. Preparation of macroporous calcium phosphate cement tissue engineering scaffold. Biomaterials. 2002;23:3063–72.

    Article  CAS  Google Scholar 

  43. Ginebra MP, Espanol M, Montufar EB, Perez RA, Mestres G. New processing approaches in calcium phosphate cements and their applications in regenerative medicine. Acta Biomater. 2010;6:2863–73.

    Article  CAS  Google Scholar 

  44. Bohner M, van Landuyt P, Merkle HP, Lemaitre J. Composition effects on the pH of a hydraulic calcium phosphate cement. J Mater Sci Mater Med. 1997;8:675–81.

    Article  CAS  Google Scholar 

  45. Narayanan R, Seshadri SK, Kwon TY, Kim KH. Calcium phosphate-based coatings on titanium and its alloys. J Biomed Mater Res B Appl Biomater. 2008;85:279–99.

    CAS  Google Scholar 

  46. LeGeros RZ. Calcium phosphate-based osteoinductive materials. Chem Rev. 2008;108:4742–53.

    Article  Google Scholar 

  47. Sohier J, Daculsi G, Sourice S, de Groot K, Layrolle P. Porous beta tricalcium phosphate scaffolds used as a BMP-2 delivery system for bone tissue engineering. J Biomed Mater Res A. 2010;92:1105–14.

    Google Scholar 

  48. Son JS, Appleford M, Ong JL, Wenke JC, Kim JM, Choi SH, Oh DS. Porous hydroxyapatite scaffold with three-dimensional localized drug delivery system using biodegradable microspheres. J Control Release. 2011;153:133–40.

    Article  CAS  Google Scholar 

  49. Stavropoulos A, Becker J, Capsius B, Açil Y, Wagner W, Terheyden H. Histological evaluation of maxillary sinus floor augmentation with recombinant human growth and differentiation factor-5-coated β-tricalcium phosphate: results of a multicenter randomized clinical trial. J Clin Periodontol. 2011;38:966–74.

    Article  CAS  Google Scholar 

  50. Koch FP, Becker J, Terheyden H, Capsius B, Wagner W. A prospective, randomized pilot study on the safety and efficacy of recombinant human growth and differentiation factor-5 coated onto β-tricalcium phosphate for sinus lift augmentation. Clin Oral Implants Res. 2010;21:1301–8.

    Article  Google Scholar 

  51. Weng D, Poehling S, Pippig S, Bell M, Richter EJ, Zuhr O, Hürzeler MB. The effects of recombinant human growth/differentiation factor-5 (rhGDF-5) on bone regeneration around titanium dental implants in barrier membrane-protected defects: a pilot study in the mandible of beagle dogs. Int J Oral Maxillofac Implants. 2009;24:31–7.

    Google Scholar 

  52. Choo T, Marino V, Mark Bartold P. Effect of PDGF-BB and beta-tricalcium phosphate (β-TCP) on bone formation around dental implants: a pilot study in sheep. Clin Oral Implants Res. 2011. doi:10.1111/j.1600-0501.2011.02345.x.

  53. Luvizuto ER, Tangl S, Zanoni G, Okamoto T, Sonoda CK, Gruber R, Okamoto R. The effect of BMP-2 on the osteoconductive properties of β-tricalcium phosphate in rat calvaria defects. Biomaterials. 2011;32:3855–61.

    Article  CAS  Google Scholar 

  54. Lind M, Overgaard S, Nguyen T, Ongpipattanakul B, Bunger C, Soballe K. Transforming growth factor-β stimulates bone ongrowth. Hydroxyapatite-coated implants studied in dogs. Acta Orthop Scand. 1996;67:611–6.

    Article  CAS  Google Scholar 

  55. LeGeros RZ. Calcium phosphate materials in restorative dentistry: a review. Adv Dent Res. 1988;2:164–80.

    CAS  Google Scholar 

  56. Ambard AJ, Mueninghoff L. Calcium phosphate cement: review of mechanical and biological properties. J Prosthodont. 2006;15:321–8.

    Article  Google Scholar 

  57. Lee HH, Sang Shin U, Lee JH, Kim HW. Biomedical nanocomposites of poly(lactic acid) and calcium phosphate hybridized with modified carbon nanotubes for hard tissue implants. J Biomed Mater Res B Appl Biomater. 2011;98:246–54.

    Google Scholar 

  58. Xu Z, Neoh KG, Lin CC, Kishen A. Biomimetic deposition of calcium phosphate minerals on the surface of partially demineralized dentine modified with phosphorylated chitosan. J Biomed Mater Res B Appl Biomater. 2011;98:150–9.

    Google Scholar 

  59. Barbieri D, Yuan H, de Groot F, Walsh WR, de Bruijn JD. Influence of different polymeric gels on the ectopic bone forming ability of an osteoinductive biphasic calcium phosphate ceramic. Acta Biomater. 2011;7:2007–14.

    Article  CAS  Google Scholar 

  60. Plachokova AS, Nikolidakis D, Mulder J, Jansen JA, Creugers NH. Effect of platelet-rich plasma on bone regeneration in dentistry: a systematic review. Clin Oral Implants Res. 2008;19:539–45.

    Article  Google Scholar 

  61. Intini G. The use of platelet-rich plasma in bone reconstruction therapy. Biomaterials. 2009;30:4956–66.

    Article  CAS  Google Scholar 

  62. Chen FM, Zhang J, Zhang M, An Y, Chen F, Wu ZF. A review on endogenous regenerative technology in periodontal regenerative medicine. Biomaterials. 2010;31:7892–927.

    Article  CAS  Google Scholar 

  63. Kasten P, Vogel J, Beyen I, Weiss S, Niemeyer P, Leo A, Lüginbuhl R. Effect of platelet-rich plasma on the in vitro proliferation and osteogenic differentiation of human mesenchymal stem cells on distinct calcium phosphate scaffolds: the specific surface area makes a difference. J Biomater Appl. 2008;23:169–88.

    Article  CAS  Google Scholar 

  64. Tözüm TF, Keçeli HG. Treatment of peri-implant defect with modified sandwich bone augmentation. Case report and follow-up. N Y State Dent J. 2008;74:52–7.

    Google Scholar 

  65. Jungbluth P, Wild M, Grassmann JP, Ar E, Sager M, Herten M, Jäger M, Becker J, Windolf J, Hakimi M. Platelet-rich plasma on calcium phosphate granules promotes metaphyseal bone healing in mini-pigs. J Orthop Res. 2010;28:1448–55.

    Article  Google Scholar 

  66. Rabillard M, Grand JG, Dalibert E, Fellah B, Gauthier O, Niebauer GW. Effects of autologous platelet rich plasma gel and calcium phosphate biomaterials on bone healing in an ulnar ostectomy model in dogs. Vet Comp Orthop Traumatol. 2009;22:460–6.

    CAS  Google Scholar 

  67. Matsumoto T, Okazaki M, Nakahira A, Sasaki J, Egusa H, Sohmura T. Modification of apatite materials for bone tissue engineering and drug delivery carriers. Curr Med Chem. 2007;14:2726–33.

    Article  CAS  Google Scholar 

  68. Arkfeld DG, Rubenstein E. Quest for the Holy Grail to cure arthritis and osteoporosis: emphasis on bone drug delivery systems. Adv Drug Deliv Rev. 2005;57:939–44.

    Article  CAS  Google Scholar 

  69. Lieberman JR, Daluiski A, Einhorn TA. The role of growth factors in the repair of bone. Biology and clinical applications. J Bone Joint Surg Am. 2002;84-A:1032–44.

    Google Scholar 

  70. Sokolsky-Papkov M, Agashi K, Olaye A, Shakesheff K, Domb AJ. Polymer carriers for drug delivery in tissue engineering. Adv Drug Deliv Rev. 2007;59:187–206.

    Article  CAS  Google Scholar 

  71. Habraken WJ, Wolke JG, Jansen JA. Ceramic composites as matrices and scaffolds for drug delivery in tissue engineering. Adv Drug Deliv Rev. 2007;59:234–48.

    Article  CAS  Google Scholar 

  72. Mastrogiacomo M, Scaglione S, Martinetti R, Dolcini L, Beltrame F, Cancedda R, Quarto R. Role of scaffold internal structure on in vivo bone formation in macroporous calcium phosphate bioceramics. Biomaterials. 2006;27:3230–7.

    Article  CAS  Google Scholar 

  73. Wilson CE, van Blitterswijk CA, Verbout AJ, Dhert WJ, de Bruijn JD. Scaffolds with a standardized macro-architecture fabricated from several calcium phosphate ceramics using an indirect rapid prototy** technique. J Mater Sci Mater Med. 2011;22:97–105.

    Article  CAS  Google Scholar 

  74. Fei Z, Hu Y, Wu D, Wu H, Lu R, Bai J, Song H. Preparation and property of a novel bone graft composite consisting of rhBMP-2 loaded PLGA microspheres and calcium phosphate cement. J Mater Sci Mater Med. 2008;19:1109–16.

    Article  CAS  Google Scholar 

  75. Damron TA. Use of 3D beta-tricalcium phosphate (Vitoss) scaffolds in repairing bone defects. Nanomedicine. 2007;2:763–75.

    Article  CAS  Google Scholar 

  76. Ruhé PQ, Kroese-Deutman HC, Wolke JG, Spauwen PH, Jansen JA. Bone inductive properties of rhBMP-2 loaded porous calcium phosphate cement implants in cranial defects in rabbits. Biomaterials. 2004;25:2123–32.

    Article  Google Scholar 

  77. Seeherman HJ, Azari K, Bidic S, Rogers L, Li XJ, Hollinger JO, Wozney JM. rhBMP-2 delivered in a calcium phosphate cement accelerates bridging of critical-sized defects in rabbit radii. J Bone Joint Surg Am. 2006;88:1553–65.

    Article  Google Scholar 

  78. de Groot K, Wolke JG, Jansen JA. Calcium phosphate coatings for medical implants. Proc Inst Mech Eng H. 1998;212:137–47.

    Google Scholar 

  79. Yang Y, Kim KH, Ong JL. A review on calcium phosphate coatings produced using a sputtering process–an alternative to plasma spraying. Biomaterials. 2005;26:327–37.

    Article  CAS  Google Scholar 

  80. Shalabi MM, Gortemaker A, Van’t Hof MA, Jansen JA, Creugers NH. Implant surface roughness and bone healing: a systematic review. J Dent Res. 2006;85:496–500.

    Article  CAS  Google Scholar 

  81. Liu Y, Hunziker EB, Layrolle P, De Bruijn JD, De Groot K. Bone morphogenetic protein 2 incorporated into biomimetic coatings retains its biological activity. Tissue Eng. 2004;10:101–8.

    Article  CAS  Google Scholar 

  82. Li Y, Lee IS, Cui FZ, Choi SH. The biocompatibility of nanostructured calcium phosphate coated on micro-arc oxidized titanium. Biomaterials. 2008;29:2025–32.

    Article  CAS  Google Scholar 

  83. Schliephake H, Scharnweber D, Roesseler S, Dard M, Sewing A, Aref A. Biomimetic calcium phosphate composite coating of dental implants. Int J Oral Maxillofac Implants. 2006;21:738–46.

    Google Scholar 

  84. Reyes CD, Petrie TA, Burns KL, Schwartz Z, García AJ. Biomolecular surface coating to enhance orthopaedic tissue healing and integration. Biomaterials. 2007;28:3228–35.

    Article  CAS  Google Scholar 

  85. Salemi H, Behnamghader A, Afshar A, Ardeshir M, Forati T. Biomimetic synthesis of calcium phosphate materials on alkaline-treated titanium. Conf Proc IEEE Eng Med Biol Soc. 2007;2007:5854–7.

    CAS  Google Scholar 

  86. Suzuki O, Kamakura S, Katagiri T, Nakamura M, Zhao B, Honda Y, Kamijo R. Bone formation enhanced by implanted octacalcium phosphate involving conversion into Ca-deficient hydroxyapatite. Biomaterials. 2006;27:2671–81.

    Article  CAS  Google Scholar 

  87. Peattie RA, Rieke ER, Hewett EM, Fisher RJ, Shu XZ, Prestwich GD. Dual growth factor-induced angiogenesis in vivo using hyaluronan hydrogel implants. Biomaterials. 2006;27:1868–75.

    Article  CAS  Google Scholar 

  88. Riley CM, Fuegy PW, Firpo MA, Shu XZ, Prestwich GD, Peattie RA. Stimulation of in vivo angiogenesis using dual growth factor-loaded crosslinked glycosaminoglycan hydrogels. Biomaterials. 2006;27:5935–43.

    Article  CAS  Google Scholar 

  89. Jones AA, Buser D, Schenk R, Wozney J, Cochran DL. The effect of rhBMP-2 around endosseous implants with and without membranes in the canine model. J Periodontol. 2006;77:1184–93.

    Article  CAS  Google Scholar 

  90. Salata LA, Burgos PM, Rasmusson L, Novaes AB, Papalexiou V, Dahlin C, Sennerby L. Osseointegration of oxidized and turned implants in circumferential bone defects with and without adjunctive therapies: an experimental study on BMP-2 and autogenous bone graft in the dog mandible. Int J Oral Maxillofac Surg. 2007;36:62–71.

    Article  CAS  Google Scholar 

  91. Hayashi K, Kubo T, Doi K, Tabata Y, Akagawa Y. Development of new drug delivery system for implant bone augmentation using a basic fibroblast growth factor-gelatin hydrogel complex. Dent Mater J. 2007;26:170–7.

    Article  CAS  Google Scholar 

  92. Han D, Liu W, Ao Q, Wang G. Optimal delivery systems for bone morphogenetic proteins in orthopedic applications should model initial tissue repair structures by using a heparin-incorporated fibrin-fibronectin matrix. Med Hypotheses. 2008;71:374–8.

    Article  CAS  Google Scholar 

  93. Perez RA, Del Valle S, Altankov G, Ginebra MP. Porous hydroxyapatite and gelatin/hydroxyapatite microspheres obtained by calcium phosphate cement emulsion. J Biomed Mater Res B Appl Biomater. 2011;97:156–66.

    Google Scholar 

  94. LeGeros RZ, LeGeros JP. Calcium phosphate biomaterials: an update. Int J Oral-Med Sci. 2006;4:117–23.

    Article  CAS  Google Scholar 

  95. Verron E, Khairoun I, Guicheux J, Bouler JM. Calcium phosphate biomaterials as bone drug delivery systems: a review. Drug Discov Today. 2010;15:547–52.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We apologize to our colleagues whose work could not be cited due to space constraints. Funding from the National Natural Science Foundation of China (81071253) for some of the work mentioned in the article is gratefully appreciated. We wish to thank all contributors for the substantial information that was compiled in previously published reviews that were cited in this manuscript. Their information was immensely helpful for preparing this manuscript.

Conflict of interest

The authors declare that there is no conflict of interest

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fa-Ming Chen or Yi-Min Zhao.

Additional information

C. **e, H. Lu and W. Li contributed equally to this manuscript.

Rights and permissions

Reprints and permissions

About this article

Cite this article

**e, C., Lu, H., Li, W. et al. The use of calcium phosphate-based biomaterials in implant dentistry. J Mater Sci: Mater Med 23, 853–862 (2012). https://doi.org/10.1007/s10856-011-4535-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-011-4535-9

Keywords

Navigation