Log in

In vitro apatite formation on organic–inorganic hybrids in the CaO–SiO2–PO5/2–poly(tetramethylene oxide) system

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The osteoconduction potential of artificial materials is usually evaluated in vitro by apatite formation in a simulated body fluid (SBF) proposed by Kokubo and his colleagues. This paper reports the compositional dependence of apatite formation on organic–inorganic hybrids in the CaO–SiO2–PO5/2–poly(tetramethylene oxide) system, initiated from tetraethoxysilane (TEOS), triethyl phosphate (OP(OEt)3), calcium chloride (CaCl2) and poly(tetramethylene oxide)(PTMO) modified with alkoxysilane. Formation of an apatite layer was observed on the surface of the organic–inorganic hybrids with molar ratios of TEOS/OP(OEt)3 ranging from 100/0 to 20/80. The rate of apatite formation remarkably decreased when the hybrids were synthesized with TEOS/OP(OEt)3 ratios of 40/60 or less. Hybrids without TEOS showed no apatite formation in SBF for up to 14 days. Addition of small amounts of OP(OEt)3 to TEOS in the hybrids led to the high dissolution of calcium and silicate, while addition of large amounts of OP(OEt)3 decreased the dissolution of calcium and silicate ions and resulted in reduced apatite formation regardless of the dissolution of phosphate ions from the hybrids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hench LL, Splinter RJ, Allen WC, Greenlee TK. Bonding mechanisms at the interface of ceramic prosthetic materials. J Biomed Mater Res Symp. 1971;2:17–41.

    Google Scholar 

  2. Kokubo T. Recent progress in glass-based materials for biomedical applications. J Ceram Soc Japan (Seramikkusu Ronbunshi). 1991;99:965–73.

    CAS  Google Scholar 

  3. Hench LL. Bioactive materials: the potential for tissue regeneration. J Biomed Mater Res. 1998;41:511–8.

    Article  CAS  PubMed  Google Scholar 

  4. Kim H-M. Ceramic bioactivity and related biomimetic strategy. Curr Opin Solid State Mater. 2003;7:289–99.

    Article  CAS  Google Scholar 

  5. Ohtsuki C, Miyazaki T, Kamitakahara M, Tanihara M. Design of novel bioactive materials through organic modification of calcium silicate. J Eur Ceram Soc. 2007;27:1527–33.

    Article  CAS  Google Scholar 

  6. Ohtsuki C, Kokubo T, Takasyka K, Yamamuro T. Compositional dependence of bioactivity of glasses in the system CaO–SiO2–P2O5: its in vitro evaluation. J Ceram Soc Japan (Seramikkusu Ronbunshi). 1991;99:1–6.

    CAS  Google Scholar 

  7. Cho S-B, Nakanishi K, Kokubo T, Soga N, Ohtsuki C, Nakamura T, et al. Dependence of apatite formation on silica gel on its structure: effect of heat treatment. J Am Ceram Soc. 1995;78:1769–74.

    Article  CAS  Google Scholar 

  8. Kokubo T, Takadama H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials. 2006;27:2907–15.

    Article  CAS  PubMed  Google Scholar 

  9. Li R, Clark AE, Hench LL. An investigation of bioactive glass powders by sol–gel processing. J Appl Biomater. 1991;2:231–9.

    Article  CAS  PubMed  Google Scholar 

  10. Miyata N, Fuke K, Chen Q, Kawashita M, Kokubo T, Nakamura T. Apatite-forming ability and mechanical properties of PTMO-modified CaO–SiO2 hybrids prepared by sol–gel processing: effect of CaO and PTMO contents. Biomaterials. 2002;23:3033–40.

    Article  CAS  PubMed  Google Scholar 

  11. Koh M-Y, Kawachi G, Kikuta K, Kamitakahara M, Ohtsuki C. Synthesis of organic–inorganic hybrids of poly(tetramethylene oxide)-calcium silicate and in vitro evaluation of their bioactivity. J Ceram Soc Japan. 2007;115:732–7.

    Article  CAS  Google Scholar 

  12. Brennan AB, Miller TM. Structure/property behavior of organic–inorganic SEMI-IPNS. Mater Res Soc Symp Proc. 1996;435:155–64.

    CAS  Google Scholar 

  13. Ohtsuki C, Kokubo T, Yamamuro T. Mechanism of apatite formation on CaO–SiO2–P2O5 glasses in a simulated body fluid. J Non-Cryst Solids. 1992;143:84–92.

    Article  CAS  ADS  Google Scholar 

  14. Zhong J, Greenspan DC. Processing and properties of sol–gel bioactive glasses. J Biomed Mater Res. 2000;53:694–701.

    Article  CAS  PubMed  Google Scholar 

  15. Neuman W, Neuman M. The chemical dynamics of bone mineral. University of Chicago Press; 1958.

Download references

Acknowledgement

M.-Y. Koh appreciates financial support from the Japan Society for the Promotion of Science for Young Scientists.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mi-Young Koh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koh, MY., Kamitakahara, M., Kim, I.Y. et al. In vitro apatite formation on organic–inorganic hybrids in the CaO–SiO2–PO5/2–poly(tetramethylene oxide) system. J Mater Sci: Mater Med 21, 385–392 (2010). https://doi.org/10.1007/s10856-009-3868-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-009-3868-0

Keywords

Navigation