Log in

Effect of Zn2+ substitution on DC electrical resistivity and magnetic properties of Mg0.5−xZnxCo0.5Fe2O4 nano ferrite

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Mg0.5−xZnxCo0.5Fe2O4 with ferrites were substituted with Zn2+ with concentrations x = 0.0, 0.05, 0.1, 0.15, 0.2, and 0.25 prepared from a sol–gel auto-combustion method. The impact of Zn2+ ion substitution on morphological, structural, DC electrical resistivity, and magnetic characteristics was examined. The diffraction analysis with X-ray reveals that the prepared ferrites are spinel with a single-phase face-centred cubic structure. The cubic crystal structure samples’ values for the crystallite size (42 to 25 nm) and lattice constant (8.386 to 8.425 Å) increased as the concentration increased. Field-effect scanning electron microscopy revealed the ferrite samples’ polycrystalline structures and spherical morphologies. Using FESEM micrographs, the average grain size was between 56.4 and 85.7 nm. Fourier-transform infrared spectroscopy was used to identify two different peaks that emerged at around 585–592 cm−1 and 401–405 cm−1. These peaks revealed information on the functional groups of the sample chemicals. Temperature-dependent DC electrical resistivity shows the semiconductors’ nature samples. The vibrating sample magnetometer analysis shows that the ferrites are soft ferrimagnetic. The saturation magnetisation was increased (60.45 to 85.04 emu/g), and coercivity was decreased (356.46 to 620.59 Oe) when the concentration was increased. The study unveiled tuned values of the physical characteristics, thereby highlighting potential applications in recent technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Data availability

Data can be obtained from the corresponding author on request.

References

  1. S.Y. Mulushoa, N. Murali, M.T. Wegayehu, V. Veeraiah, K. Samatha, Investigation of structural, DC-resistivity and magnetic properties of Mg ferrite. Mater. Today 5(13), 26460–26468 (2018). https://doi.org/10.1016/j.matpr.2018.08.100

    Article  CAS  Google Scholar 

  2. S.Y. Mulushoa, C.V. Kumari, V. Raghavendra, K.E. Babu, B.S.N. Murthy, K. Suribabu, Y. Ramakrishna, N. Murali, Effect of Zn–Cr substitution on the structural, magnetic and electrical properties of magnesium ferrite materials. Physica B 572, 139–147 (2019). https://doi.org/10.1016/j.physb.2019.07.057

    Article  CAS  Google Scholar 

  3. S. Jesus Mercy, D. Parajuli, N. Murali, A. Ramakrishna, Y. Ramakrishna, V. Veeraiah, K. Samatha, Microstructural, thermal, electrical and magnetic analysis of Mg2+ substituted cobalt ferrite. Appl. Phys. A 126, 1–13 (2020). https://doi.org/10.1007/s00339-020-04048-6

    Article  CAS  Google Scholar 

  4. P. Himakar, K. Jayadev, D. Parajuli, N. Murali, P. Taddesse, S.Y. Mulushoa, T.W. Mammo, B. KishoreBabu, V. Veeraiah, K.J.A. Samatha, Effect of Cu substitution on the structural, magnetic, and dc electrical resistivity response of Co0.5Mg0.5xCuxFe2O4 nanoferrites. Appl. Phys. A 127(5), 371 (2021). https://doi.org/10.1007/s00339-021-04521-w

    Article  CAS  Google Scholar 

  5. B. Madhavilatha, D. Parajuli, K. Jayadev, C. Komali, N. Murali, V. Veeraiah, K. Samatha, Effect of Cu substitution on magnetic properties of Co0.6Ni0.4Fe2O4 nanoferrites. Biointerface Res. Appl. Chem. 12(2), 1899–1906 (2022). https://doi.org/10.33263/BRIAC122.18991906

    Article  CAS  Google Scholar 

  6. P. Himakar, N. Murali, D. Parajuli, V. Veeraiah, K. Samatha, M.T. Wegayehu, B.K. Mujasam, H. Muhammad, E.H. Raslan, A.S. Farooq, Correction to: magnetic and DC electrical properties of Cu doped Co–Zn nanoferrites. J. Electron. Mater. 50(6), 3758–3758 (2021). https://doi.org/10.1007/s11664-021-08760-8

    Article  CAS  Google Scholar 

  7. H.R. Daruvuri, N. Murali, M. Madhu, A. Ramakrishna, D. Parajuli, M.P. Dasari, Effects of Zn2+ substitution on the structural, morphological, DC electrical resistivity, permeability and magnetic properties of Co0.5Cu0.5xZnxFe2O4 nanoferrite. Appl. Phys. A 129(1), 61 (2023). https://doi.org/10.1007/s00339-022-06298-y

    Article  CAS  Google Scholar 

  8. K. Sakthipandi, N. Lenin, R.R. Kanna, A.S. Afroze, M. Sivabharathy, PVA-doped NiNdxFe2xO4 nanoferrites: tuning of dielectric and magnetic properties. J. Magn. Magn. Mater. 485, 105–111 (2019). https://doi.org/10.1016/j.jmmm.2019.04.074

    Article  CAS  Google Scholar 

  9. A. Hossain, A.R. Gilev, P. Yanda, V.A. Cherepanov, A.S. Volegov, K. Sakthipandi, A. Sundaresan, Optical, magnetic and magneto-transport properties of Nd1xAxMn05Fe05O3δ (A = Ca, Sr, Ba; x= 0, 025). J. Alloy. Compd. 847, 156297 (2020). https://doi.org/10.1016/j.jallcom.2020.156297

    Article  CAS  Google Scholar 

  10. K. Sakthipandi, K. Kannagi, A. Hossain, Effect of lanthanum do** on the structural, electrical, and magnetic properties of Mn0.5Cu0.5LaxFe2−xO4 nanoferrites. Ceram. Int. 46(11), 19634–19638 (2020). https://doi.org/10.1016/j.ceramint.2020.04.255

    Article  CAS  Google Scholar 

  11. P. Kulandaivelu, K. Sakthipandi, P.S. Kumar, V. Rajendran, Mechanical properties of bulk and nanostructured La0.61Sr0.39MnO3 perovskite manganite materials. J. Phys. Chem. Solids 74(2), 205–214 (2013). https://doi.org/10.1016/j.jpcs.2012.09.008

    Article  CAS  Google Scholar 

  12. A. Subalakshmi, B. Kavitha, N. Srinivasan, M. Rajarajan, A. Suganthi, An affordable efficient SrWO4 decorated Bi2O3 nanocomposite: Photocatalytic activity for the degradation of methylene blue under visible light irradiation. Mater. Today 48, 409–419 (2022). https://doi.org/10.1016/j.matpr.2020.11.167

    Article  CAS  Google Scholar 

  13. K. Sakthipandi, B.G. Babu, G. Rajkumar, A. Hossian, M.S. Raghavan, M.R. Kumar, Investigation of magnetic phase transitions in Ni0.5Cu0.25Zn0.25Fe2xLaxO4 nanoferrites using magnetic and in-situ ultrasonic measurements. Physica B B 645, 414280 (2022). https://doi.org/10.1016/j.physb.2022.414280

    Article  CAS  Google Scholar 

  14. G.V. Priya, S.R. Kumar, B. Aruna, M.K. Raju, D. Parajuli, N. Murali, P.V.L. Narayana, Effect of Al3+ substitution on structural and magnetic properties of NiZnCo nano ferrites. Bionterface Res. Appl. Chem 12, 6094–6099 (2022). https://doi.org/10.33263/BRIAC125.60936099

    Article  Google Scholar 

  15. D. Parajuli, N. Murali, V. Raghavendra, B. Suryanarayana, K.M. Batoo, K. Samatha, Investigation of structural, morphological and magnetic study of Ni–Cu-substituted Li0.5Fe2.5O4 ferrites. Appl. Phys. A 129(7), 502 (2023). https://doi.org/10.1007/s00339-023-06772-1

    Article  CAS  Google Scholar 

  16. H. Bhargava, N. Lakshmi, V. Sebastian, V.R. Reddy, K. Venugopalan, A. Gupta, Investigation of the large magnetic moment in nano-sized Cu0.25Co0.25Zn0.5Fe2O4. J. Phys. D 42(24), 245003 (2009). https://doi.org/10.1088/0022-3727/42/24/245003

    Article  CAS  Google Scholar 

  17. B. Rao, P.S.V. Shanmukhi, T.W. Mammo, D. Kothandan, T. Aregai, T. Desta, M. Kahsay, G. Hagos, N. Murali, K.M. Batoo, A.A. Ibrahim, Investigation effect of Cr3+ substituted on enhanced dielectric and magnetic properties of Co–Cu nano ferrites for high-density data storage applications. Appl. Phys. A 130(6), 1–14 (2024). https://doi.org/10.1007/s00339-024-07569-6

    Article  CAS  Google Scholar 

  18. G.V. Priya, N. Murali, M.K. Raju, B. Krishan, D. Parajuli, P. Choppara, B.C. Sekhar, R. Verma, K.M. Batoo, P.L. Narayana, Influence of Cr3+ substituted NiZnCo nano-ferrites: structural, magnetic and DC electrical resistivity properties. Appl. Phys. A 128(8), 663 (2022). https://doi.org/10.1007/s00339-022-05809-1

    Article  CAS  Google Scholar 

  19. A.I. Ivanets, V. Srivastava, M.Y. Roshchina, M. Sillanpää, V.G. Prozorovich, V.V. Pankov, Magnesium ferrite nanoparticles as a magnetic sorbent for the removal of Mn2+, Co2+, Ni2+ and Cu2+ from aqueous solution. Ceram. Int. 44(8), 9097–9104 (2018). https://doi.org/10.1016/j.ceramint.2018.02.117

    Article  CAS  Google Scholar 

  20. M.A. Munir, M.Y. Naz, S. Shukrullah, M.T. Ansar, M.U. Farooq, M. Irfan, S.N.F. Mursal, S. Legutko, J. Petru, M. Pagác, Enhancement of magnetic and dielectric properties of Ni0.25Cu0.25Zn0.50Fe2O4 magnetic nanoparticles through non-thermal microwave plasma treatment for high-frequency and energy storage applications. Materials 15, 6890 (2022). https://doi.org/10.3390/ma15196890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. R.Y. Mudi, V.L.N. Balaji Gupta Tiruveedhi, D. Kothandan, P.S.V. Shanmukhi, T.W. Mammo, N. Murali, Structural investigation, magnetic and DC electrical resistivity properties of Co0.5xNixZn0.5Fe2O4 nano ferrites. Inorg. Chem. Commun.. Chem. Commun. 160, 111958 (2024). https://doi.org/10.1016/j.inoche.2023.111958

    Article  CAS  Google Scholar 

  22. P. Himakar, N. Murali, D. Parajuli, V. Veeraiah, K. Samatha, T.W. Mammo, K.M. Batoo, M. Hadi, E.H. Raslan, S.F. Adil, Magnetic and DC electrical properties of Cu doped Co–Zn nanoferrites. J. Electron. Mater. (2021). https://doi.org/10.1007/s11664-021-08760-8

    Article  Google Scholar 

  23. K. Chandramouli, V. Raghavendra, P.V.S.K. Phanidhar Varma, B. Suryanarayana, T.W. Mammo, D. Parajuli, P. Taddesse, N. Murali, Influence of Cr3+-substituted Co0.7Cu0.3Fe2xCrxO4 nano ferrite on structural, morphological, dc electrical resistivity and magnetic properties. Appl. Phys. A 127, 596 (2021). https://doi.org/10.1007/s00339-021-04750-z

    Article  CAS  Google Scholar 

  24. T.W. Mammo, N. Murali, P.S.V. Shanmukhi, M. GnanaKiran, D. Parajuli, G.M. Rao, K.M. Batoo, S. Hussain, Improved magnetic and dielectric behavior of Al–Cr substituted SrFe12O19 nano hexaferrite. Appl. Phys. A 129, 865 (2023). https://doi.org/10.1007/s00339-023-07157-0

    Article  CAS  Google Scholar 

  25. S.K. Abdel-Aal, A.S. Abdel-Rahman, Graphene influence on the structure, magnetic, and optical properties of rare-earth perovskite. J. Nanopart. Res. 22(9), 267 (2020). https://doi.org/10.1007/s11051-020-05001-7

    Article  CAS  Google Scholar 

  26. F. Barkat, M. Afzal, Formation mechanism and lattice parameter investigation for copper-substituted cobalt ferrites from Zingiber officinale and Elettaria cardamom seed extracts using biogenic route. Materials 15, 4374 (2022). https://doi.org/10.3390/ma15134374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. K.M. Batoo, G. Kumar, Y. Yang, Y. Al-Douri, M. Singh, R.B. Jotania, A. Imran, Structural, morphological and electrical properties of Cd2+ doped MgFe2xO4 ferrite nanoparticles. J. Alloy. Compd. 726, 179–186 (2017). https://doi.org/10.1016/j.jallcom.2017.07.237

    Article  CAS  Google Scholar 

  28. N. Shamgani, A. Gholizadeh, Structural, magnetic and elastic properties of Mn0.3−xMgxCu0.2Zn0.5Fe3O4 nanoparticles. Ceram. Int. 45(1), 239–246 (2019). https://doi.org/10.1016/j.ceramint.2018.09.158

    Article  CAS  Google Scholar 

  29. M. Lakshmi, K.V. Kumar, K. Thyagarajan, Structural and magnetic properties of Cr–Co nano ferrite particles. Adv. Nanopart. 5(01), 103–113 (2016). https://doi.org/10.4236/anp.2016.51012

    Article  CAS  Google Scholar 

  30. K.M. Batoo, M.S. Abd El-sadek, Electrical and magnetic transport properties of Ni–Cu–Mg ferrite nanoparticles prepared by sol–gel method. J. Alloy. Compd. 566, 112–119 (2013). https://doi.org/10.1016/j.jallcom.2013.02.129

    Article  CAS  Google Scholar 

  31. R.E. El-Shater, H. El Shimy, S.A. Saafan, M.A. Darwish, D. Zhou, K.C. Naidu, M.U. Khandaker, Z. Mahmoud, A.V. Trukhanov, S.V. Trukhanov, F. Fakhry, Fabrication of doped ferrites and exploration of their structure and magnetic behavior. Mater. Adv. 4(13), 2794–2810 (2023). https://doi.org/10.1039/d3ma00105a

    Article  CAS  Google Scholar 

  32. D. Parajuli, P. Taddesse, N. Murali, K. Samatha, Correlation between the structural, magnetic, and dc resistivity properties of Co0.5M0.5-xCuxFe2O4 (M = Mg, and Zn) nano ferrites. Appl. Phys. A 128(1), 58 (2022). https://doi.org/10.1007/s00339-021-05211-3

    Article  CAS  Google Scholar 

  33. M.P. Reddy, X. Zhou, A. Yann, S. Du, Q. Huang, A.M.A. Mohamed, Low temperature hydrothermal synthesis, structural investigation and functional properties of CoxMn1−xFe2O4 (0 ⩽ x ⩽ 1.0) nanoferrites. Superlattices Microstruct. Microstruct. 81, 233–242 (2015). https://doi.org/10.1016/j.spmi.2015.02.001

    Article  CAS  Google Scholar 

  34. H. Khedri, A. Gholizadeh, Experimental comparison of structural, magnetic and elastic properties of M0.3Cu0.2Zn0.5Fe2O4 (M = Cu, Mn, Fe Co, Ni, Mg) nanoparticles. Appl. Phys. A 125(10), 709 (2019). https://doi.org/10.1007/s00339-019-3010-1

    Article  CAS  Google Scholar 

  35. Unit-cell software for cell refinement method of tjb hol-land & sat redfern, 1995.

  36. D. Parajuli, N. Murali, A.V. Rao, A.S.Y.M. Ramakrishna, K. Samatha, Structural, dc electrical resistivity and magnetic investigation of Mg, Ni, and Zn substituted Co–Cu nano spinel ferrites. S. Afr. J. Chem. Eng. 42, 106–114 (2022). https://doi.org/10.1016/j.sajce.2022.07.009

    Article  Google Scholar 

  37. N. Wiriya, A. Bootchanont, S. Maensiri, E. Swatsitang, Magnetic properties of Zn1−xMnxFe2O4 nanoparticles prepared by hydrothermal method. Microelectron. Eng. 25(126), 1–8 (2014). https://doi.org/10.1016/j.mee.2014.03.044

    Article  CAS  Google Scholar 

  38. S.C. Mazumdar, F. Alam, U.H. Tanni, K. Kali, B.C. Das, M.N. Khan, Effect of Ti4+ do** on structural, electrical and magnetic properties of Ni0.4Cu0.2Zn0.4Fe2−xTixO4 ferrites. Mater. Sci. Appl. 10(12), 733–745 (2019). https://doi.org/10.4236/msa.2019.1012053

    Article  CAS  Google Scholar 

  39. A.P. Amaliya, S. Anand, S. Pauline, Investigation on structural, electrical and magnetic properties of titanium substituted cobalt ferrite nanocrystallites. J. Magn. Magn. Mater. 467, 14–28 (2018). https://doi.org/10.1016/j.jmmm.2018.07.058

    Article  CAS  Google Scholar 

  40. A. Gholizadeh, M. Beyranvand, Investigation on the structural, magnetic, dielectric and impedance analysis of Mg0.3xBaxCu0.2Zn0.5Fe2O4 nanoparticles. Physica B B 584, 412079 (2020). https://doi.org/10.1016/j.physb.2020.412079

    Article  CAS  Google Scholar 

  41. R. Sefatgol, A. Gholizadeh, The effect of the annealing temperature on the microstructural, magnetic, and spin-dynamical properties of Mn–Mg–Cu–Zn ferrites. Physica B B 624, 413442 (2022). https://doi.org/10.1016/j.physb.2021.413442

    Article  CAS  Google Scholar 

  42. A.S. Abdel-Rahman, Y.A. Sabry, An approach to the micro-strain distribution inside nanoparticle structure. Int. J. Non-Linear Mech. 161, 104670 (2024). https://doi.org/10.1016/j.ijnonlinmec.2024.104670

    Article  Google Scholar 

  43. M.A. Almessiere, Y. Slimani, H. Güngüneş, A.D. Korkmaz, T. Zubar, S. Trukhanov, A. Trukhanov, A. Manikandan, F. Alahmari, A. Baykal, Influence of Dy3+ ions on the microstructures and magnetic, electrical, and microwave properties of [Ni0.4Cu0.2Zn0.4](Fe2−xDyx)O4(0.00 ≤ x ≤ 0.04) spinel ferrites. ACS Omega 6(15), 10266–10280 (2021). https://doi.org/10.1021/acsomega.1c00611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. A.R. Liandi, A.H. Cahyana, A.J. Kusumah, A. Lupitasari, D.N. Alfariza, R. Nuraini, R.W. Sari, F.C. Kusumasari, Recent trends of spinel ferrites (MFe2O4: Mn Co, Ni, Cu, Zn) applications as an environmentally friendly catalyst in multicomponent reactions: a review. Case Stud. Chem. Environ. Eng. 7, 100303 (2023). https://doi.org/10.1016/j.cscee.2023.100303

    Article  CAS  Google Scholar 

  45. S.K. Abdel-Aal, A.S. Abdel-Rahman, W.M. Gamal, M. Abdel-Kader, H.S. Ayoub, A.F. El-Sherif, M.F. Kandeel, S. Bozhko, E.E. Yakimov, E.B. Yakimov, Crystal structure, vibrational spectroscopy and optical properties of a one-dimensional organic–inorganic hybrid perovskite of [NH3CH2CH (NH3) CH2] BiCl5. Acta Crystallogr. Sect. B 75(5), 880–886 (2019). https://doi.org/10.1107/S2052520619011314

    Article  CAS  Google Scholar 

  46. A. Munir, F. Ahmed, M. Saqib, M. Anis-ur-Rehman, Electrical properties of Ni–Zn ferrite nanoparticles prepared by simplified sol–gel method. J. Supercond. Novel Magn. 28, 983–987 (2015). https://doi.org/10.1007/s10948-014-2737-3

    Article  CAS  Google Scholar 

  47. M.F. Kandeel, S.K. Abdel-Aal, A.F. El-Sherif, H.S. Ayoub, A.S. Abdel-Rahman, Crystal structure and optical properties of 1D-bi based organic-inorganic hybrid perovskite. IOP Conf. Series 610(1), 012063 (2019). https://doi.org/10.1088/1757-899X/610/1/012063

    Article  CAS  Google Scholar 

  48. S. Asiri, M. Sertkol, S. Guner, H. Gungunes, K.M. Batoo, T.A. Saleh, H. Sozeri, M.A. Almessiere, A. Manikandan, A. Baykal, Hydrothermal synthesis of CoyZnyMn12yFe2O4 nanoferrites: magneto-optical investigation. Ceram. Int. 44(5), 5751–5759 (2018). https://doi.org/10.1016/j.ceramint.2017.12.233

    Article  CAS  Google Scholar 

  49. W. Aslam Farooq, M.S. Ul Hasan, M.I. Khan, A.R. Ashraf, M.A. Qayyum, N. Yaqub, M.A. Almutairi, M. Atif, A. Hanif, Structural, optical and electrical properties of Cu0.6CoxZn0.4xFe2O4 (x = 0.0, 0.1, 0.2, 0.3, 0.4) soft ferrites. Molecules 26, 1399 (2021). https://doi.org/10.3390/molecules26051399

    Article  CAS  PubMed  Google Scholar 

  50. A. Ramakrishna, N. Murali, T.W. Mammo, K. Samatha, V. Veeraiah, Structural and DC electrical resistivity, magnetic properties of Co0.5M0.5Fe2O4 (M = Ni, Zn, and Mg) ferrite nanoparticles. Physica B B 534, 134–140 (2018). https://doi.org/10.1016/j.physb.2018.01.033

    Article  CAS  Google Scholar 

  51. M.P. Ghosh, S. Mukherjee, Microstructural, magnetic, and hyperfine characterizations of Cu-doped cobalt ferrite nanoparticles. J. Am. Ceram. Soc. 102(12), 7509–7520 (2019). https://doi.org/10.1111/jace.16687

    Article  CAS  Google Scholar 

  52. H.R. Daruvuri, K. Chandu, N. Murali, D. Parajuli, S. YonatanMulushoa, M.P. Dasari, Effect on structural, dc electrical resistivity, and magnetic properties by the substitution of Zn2+ on Co–Cu nano ferrite. Inorg. Chem. Commun.. Chem. Commun. 143, 109794 (2022). https://doi.org/10.1016/j.inoche.2022.109794

    Article  CAS  Google Scholar 

  53. K. Chandramouli, P. Anantha Rao, B. Suryanarayana, V. Raghavendra, S.J. Mercy, D. Parajuli, P. Taddesse, S.Y. Mulushoa, T.W. Mammo, N. Murali, Effect of Cu substitution on magnetic and DC electrical resistivity properties of Ni–Zn nanoferrites. J. Mater. Sci. (2021). https://doi.org/10.1007/s10854-021-06127-7

    Article  Google Scholar 

  54. K. Chandramouli, B. Suryanarayana, P.V.S.K. Phanidhar Varma, V. Raghavendra, K.A. Emmanuel, P. Taddesse, N. Murali, T.W. Mammo, D. Parajuli, Effect of Cr3+ substitution on dc electrical resistivity and magnetic properties of Cu0.7Co0.3Fe2xCrxO4 ferrite nanoparticles prepared by sol–gel auto combustion method. Results Phys. 24, 104117 (2021). https://doi.org/10.1016/j.rinp.2021.104117

    Article  Google Scholar 

  55. T.W. Mammo, N. Murali, Y.M. Sileshi, T. Arunamani, Effect of Ce-substitution on structural, morphological, magnetic and DC electrical resistivity of Co-ferrite materials. Physica B B 531, 164–170 (2018). https://doi.org/10.1016/j.physb.2017.12.049

    Article  CAS  Google Scholar 

  56. C. Komali, N. Murali, K. Rajkumar, A. Ramakrishna, S. Yonatan Mulushoa, D. Parajuli, P.N.V. Pramila Rani, S. Ampolu, K. Chandra Mouli, Y. Ramakrishna, Probing the dc electrical resistivity and magnetic properties of mixed metal oxides Cr3+ substituted Mg–Zn ferrites. Chem. Papers 77(1), 109–117 (2023). https://doi.org/10.1007/s11696-022-02466-9

    Article  CAS  Google Scholar 

  57. J. Guo, B. He, Y. Han, H. Liu, J. Han, X. Ma, J. Wang, W. Gao, W. Lü, Resurrected and tunable conductivity and ferromagnetism in the secondary growth La0.7Ca0.3MnO3 on transferred SrTiO3 membranes. Nano Lett. 24(4), 1114–1121 (2024). https://doi.org/10.1021/acs.nanolett.3c03651

    Article  CAS  PubMed  Google Scholar 

  58. T.W. Mammo, T.A. Gebresilassie, P.S.V. Shanmukhi, B.T. Teklehaimanot, N. Murali, K.M. Batoo, S. Hussain, Study of structural, electrical and magnetic properties of co-substituted Co1−2xNixMgxFe2O4 (0 ≤ x ≤ 0.25) nanoferrite materials. Appl. Phys. A 130(3), 178 (2024). https://doi.org/10.1007/s00339-024-07347-4

    Article  CAS  Google Scholar 

  59. K.L.V. Nagasree, B. Suryanarayana, V. Raghavendra, S. Uppugalla, T.W. Mammo, D. Kavyasri, N. Murali, M.K. Raju, D. Parajuli, K. Samatha, Influence of Mg2+ and Ce3+ substituted on synthesis, structural, morphological, electrical, and magnetic properties of cobalt nano ferrites. Inorg. Chem. Commun.. Chem. Commun. (2023). https://doi.org/10.1016/j.inoche.2023.110405

    Article  Google Scholar 

  60. M.A. Abdo, A.A. El-Daly, Sm-substituted copper–cobalt ferrite nanoparticles: preparation and assessment of structural, magnetic and photocatalytic properties for wastewater treatment applications. J. Alloy. Compd. 883, 160796 (2021). https://doi.org/10.1016/j.jallcom.2021.160796

    Article  CAS  Google Scholar 

  61. R.V. Bharathi, M.K. Raju, P.S.V. Shanmukhi, M.G. Kiran, N. Murali, D. Parajuli, T.W. Mammo, K. Samatha, Enhanced DC electrical resistivity and magnetic properties of transition metal cobalt substituted spinel MgFe2O4 ferrite system. Inorg. Chem. Commun. 158, 111713 (2023). https://doi.org/10.1016/j.inoche.2023.111713

    Article  CAS  Google Scholar 

  62. R.V. Bharathi, M.K. Raju, S. Uppugalla, V. Raghavendra, D. Parajuli, B. Suryanarayana, S.Y. Mulushoa, N. Murali, K. Samatha, Cu2+ substituted Mg–Co ferrite has improved dc electrical resistivity and magnetic properties. Inorg. Chem. Commun. 149, 110452 (2023). https://doi.org/10.1016/j.inoche.2023.110452

    Article  CAS  Google Scholar 

  63. H.B. Omietimi, S.A. Afolalu, J.F. Kayode, S.I. Monye, S.L. Lawal, M.E. Emetere, An overview of nanotechnology and its application. E3S Web Conf. 391, 01079 (2023). https://doi.org/10.1051/e3sconf/202339101079

    Article  Google Scholar 

  64. J. Mathew, J. Joy, S.C. George, Potential applications of nanotechnology in transportation: a review. J. King Saud Univ. 31, 586–594 (2019). https://doi.org/10.1016/j.jksus.2018.03.015

    Article  Google Scholar 

  65. T.W. Mammo, C.V. Kumari, S.J. Margarette, A. Ramakrishna, R. Vemuri, Y.B. Shankar Rao, K.L. Vijaya Prasad, N.M. Ramakrishna, Synthesis, structural, dielectric and magnetic properties of cobalt ferrite nanomaterial prepared by sol-gel autocombustion technique. Physica B B 581, 411769 (2020). https://doi.org/10.1016/j.physb.2019.411769

    Article  CAS  Google Scholar 

  66. M. Madhu, A.V. Rao, D. Parajuli, S.Y. Mulushoa, N. Murali, Cr3+ substitution influence on structural, magnetic and electrical properties of the Ni0.3Zn0.5Co0.2Fe2-xCrxO4 (0.00 ≤ x ≤ 0.20) nanosized spinel ferrites. Inorg. Chem. Commun.. Chem. Commun. 143, 109818 (2022). https://doi.org/10.1016/j.inoche.2022.109818

    Article  CAS  Google Scholar 

  67. B. Suryanarayana, P.P. Varma, P.S.V. Shanmukhi, M.G. Kiran, N. Murali, T.W. Mammo, V. Raghavendra, D. Parajuli, K.M. Batoo, S. Hussain, Comparison of the effect of Cr3+ substituted Co–Cu and Cu–Co nano ferrites on structural, magnetic, DC electrical resistivity, and dielectric properties. J. Mater. Sci. Mater. Electron. 35, 93 (2024). https://doi.org/10.1007/s10854-023-11808-6

    Article  CAS  Google Scholar 

  68. S.K. Abdel-Aal, A.S. Abdel-Rahman, Fascinating physical properties of 2D hybrid perovskite [(NH3)(CH2)7 (NH3)] CuClxBr4–x, x = 0, 2 and 4. J. Electron. Mater. 48, 1686–1693 (2019). https://doi.org/10.1007/s11664-018-06916-7

    Article  CAS  Google Scholar 

  69. G. Kumar, R. Rani, S. Sharma, K.M. Batoo, M. Singh, Electric and dielectric study of cobalt substituted Mg–Mn nanoferrites synthesized by solution combustion technique. Ceram. Int. 39(5), 4813–4818 (2013). https://doi.org/10.1016/j.ceramint.2012.11.071

    Article  CAS  Google Scholar 

  70. S.M. Hoque, M.S. Ullah, F.A. Khan, M.A. Hakim, D.K. Saha, Structural and magnetic properties of Li–Cu mixed spinel ferrites. Physica B 406(9), 1799–1804 (2011). https://doi.org/10.1016/j.physb.2011.02.031

    Article  CAS  Google Scholar 

  71. V. Verma, S.P. Gairola, V. Pandey, R.K. Kotanala, H. Su, Permeability of Nb and Ta doped lithium ferrite in high frequency range. Solid State Commun. 148(3–4), 117–121 (2008). https://doi.org/10.1016/j.ssc.2008.07.044

    Article  CAS  Google Scholar 

  72. S. Verma, J. Chand, K.M. Batoo, M. Singh, Cation distribution and Mössbauer spectral studies of Mg0.2Mn0.5Ni0.3InxFe2−xO4 ferrites (x = 0.0, 0.05 and 0.10). J. Alloy. Compd. 565, 148–153 (2013). https://doi.org/10.1016/j.jallcom.2013.02.101

    Article  CAS  Google Scholar 

  73. I.H. Gul, A.Z. Abbasi, F. Amin, M. Anis-ur-Rehman, A. Maqsood, Structural, magnetic and electrical properties of Co1−xZnxFe2O4 synthesized by co-precipitation method. J. Magn. Magn. Mater. 311(2), 494–499 (2007). https://doi.org/10.1016/j.jmmm.2006.08.005

    Article  CAS  Google Scholar 

  74. M.N. Ashiq, M.J. Iqbal, M. Najam-ul-Haq, P.H. Gomez, A.M. Qureshi, Synthesis, magnetic and dielectric properties of Er–Ni doped Sr-hexaferrite nanomaterials for applications in high density recording media and microwave devices. J. Magn. Magn. Mater. 324(1), 15–19 (2012). https://doi.org/10.1016/j.jmmm.2011.07.016

    Article  CAS  Google Scholar 

  75. M.N. Akhtar, M.A. Khan, Effect of rare earth do** on the structural and magnetic features of nanocrystalline spinel ferrites prepared via sol–gel route. J. Magn. Magn. Mater.Magn. Magn. Mater. (2018). https://doi.org/10.1016/j.jmmm.2018.03.069

    Article  Google Scholar 

  76. R.H. Kadam, R.B. Borade, M.L. Mane, D.R. Mane, K.M. Batoo, S.E. Shirsath, Structural, mechanical, dielectric properties and magnetic interactions in Dy3+-substituted Co–Cu–Zn nanoferrites. RSC Adv. 10(47), 27911–27922 (2020). https://doi.org/10.1039/D0RA05274D

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. P.S. Jadhav, K.K. Patankar, V. Puri, Structural, electrical and magnetic properties of Ni–Co–Cu–Mn ferrite thick films. Mater. Res. Bull. 75, 162–166 (2016). https://doi.org/10.1016/j.materresbull.2015.11.034

    Article  CAS  Google Scholar 

  78. Y. Vijapure, Synthesis and properties of Ho3+ doped Co–Cr–Fe ferrite nanoparticles prepared by sol–gel chemical route. Int. J. Res. Appl. Sci. Biotechnol. 9(1), 203–206 (2022)

    Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

V. Srinivasa Rao, V Prasad prepared the sample and wrote the manuscript, A. Raghavendra Rao helped to discuss the article framework and participated in the testing of materials, K. Anil Kumar developed the experimental formula and provided the measurements, and T. Madhu Mohan provided research ideas and guided experiments. All authors contributed to the discussions and preparation of the manuscript.

Corresponding author

Correspondence to T. Madhu Mohan.

Ethics declarations

Conflict of interest

The authors declare they have no competing interests.

Ethical approval

The authors certify that they have no financial or personal interests that compete with or appear to influence the research presented in this publication. There are no human or animal participants in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rao, V.S., Prasad, V., Rao, A.R. et al. Effect of Zn2+ substitution on DC electrical resistivity and magnetic properties of Mg0.5−xZnxCo0.5Fe2O4 nano ferrite. J Mater Sci: Mater Electron 35, 1398 (2024). https://doi.org/10.1007/s10854-024-13166-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-13166-3

Navigation