Log in

Near infrared emission in Nd3+ and Nd3+/Yb3+co-doped LiY(WO4)2 phosphor

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this paper, a series of Nd3+ and Nd3+/Yb3+ co-doped LiY(WO4)2 phosphor materials synthesized by conventional solid-state reaction(SSR) technique are investigated. Crystal structure and optical properties of as synthesized samples were tested through the powder X-ray diffraction (PXRD) analysis and fluorescence spectrophotometer respectively. Nd3+ and Nd3+/Yb3+ (0.5–5 mol%) co-doped LiY(WO4)2 phosphors were prepared and reported first time. The PXRD analysis ascertains the wolframite structure with the space group P2/n. Scanning Electron Microscopy confirms the morphology of the as prepared sample and EDX confirms the elemental composition. The host emission was obtained at 483 nm when it was excited with 282 nm wavelength. NIR emission observed at 1068 nm attributed to 4F3/24I11/2 for Nd3+ doped LiY(WO4)2 when it was excited with 590 nm attributed to 4I9/24G5/2. Also, Nd3+/Yb3+ co-doped emission observed at 1002 nm (2F5/22F7/2) when it was excited with 589 nm (4I9/2→4G5/2). The results suggest that Nd3+ and Nd3+/Yb3+co-doped LiY(WO4)2 is an efficient NIR emitting phosphor suitable for LASER, bio-imaging, optical temperature sensors and other optical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Data availability

Data will be made available on reasonable request.

References

  1. S. Richard, Upconversion laser processes. Prog. Quantum Electron. 20, 271–358 (1996). https://doi.org/10.1016/0079-6727(95)00007-0

    Article  Google Scholar 

  2. E. Downing, L. Hesselink, J. Ralston, R. Macfarlane, A three-color, solid-state, three-dimensional display. Science 273, 1185–1189 (1996). https://doi.org/10.1126/science.273.5279.1185

    Article  CAS  Google Scholar 

  3. G.S. Maciel, C.B. de Araújo, Y. Messaddeq, M.A. Aegerter, Frequency upconversion in Er 3+-doped fluoroindate glasses pumped at 1.48 μm. Phys. Rev. B 55, 6335 (1997). https://doi.org/10.1103/PhysRevB.55.6335

    Article  CAS  Google Scholar 

  4. M. Rico, V. Volkov, C. Zaldo, Photoluminescence and up-conversion of Er3+ in tetragonal NaBi(XO4)2, X= Mo or W, scheelites. J. Alloys Compd.s Compd. 323, 806–810 (2001). https://doi.org/10.1016/S0925-8388(01)01149-5

    Article  Google Scholar 

  5. S.F. Lim, R. Riehn, W.S. Ryu, N. Khanarian, C.K. Tung, D. Tank, R.H. Austin, In vivo and scanning electron microscopy imaging of upconverting nanophosphors in caenorhabditis elegans. Nano Lett. 6, 169–174 (2006). https://doi.org/10.1021/nl0519175

    Article  CAS  PubMed  Google Scholar 

  6. S. Jiayue, X. Jianbo, Z. **angyan, D. Haiyan, Hydrothermal synthesis of SrF2: Yb3+/Er3+ micro-/nanocrystals with multiform morphologies and upconversion properties. J. Rare Earths 29, 32–38 (2011). https://doi.org/10.1016/S1002-0721(10)60396-1

    Article  CAS  Google Scholar 

  7. N.-N. Dong, M. Pedroni, F. Piccinelli, G. Conti, A. Sbarbati, J.E. Ramírez-Hernández, L.M. Maestro, M.C. Iglesias-de la Cruz, F. Sanz-Rodriguez, A. Juarranz, F. Chen, F. Vetrone, J.A. Capobianco, J.G. Solé, M. Bettinelli, D. Jaque, A. Speghini, NIR-to-NIR two-photon excited CaF2: Tm3+, Yb3+ nanoparticles: multifunctional nanoprobes for highly penetrating fluorescence bio-imaging. ACS Nano 5, 8665–8671 (2011). https://doi.org/10.1021/nn202490m

    Article  CAS  PubMed  Google Scholar 

  8. Bo. Fan, C. Chlique, O. Merdrignac-Conanec, X. Zhang, X. Fan, Near-infrared quantum cutting material Er3+/Yb3+ doped La2O2S with an external quantum yield higher than 100%. J. Phys. Chem. C 116, 11652–11657 (2012). https://doi.org/10.1021/jp3016744

    Article  CAS  Google Scholar 

  9. Y. Ren, G. Brown, A. Ródenas, S. Beecher, F. Chen, A.K. Kar, Mid-infrared waveguide lasers in rare-earth-doped YAG. Opt. Lett. 37, 3339–3341 (2012). https://doi.org/10.1364/OL.37.003339

    Article  CAS  PubMed  Google Scholar 

  10. Z. **a, C. Ma, M.S. Molokeev, Q. Liu, K. Rickert, K.R. Poeppelmeier, Chemical unit cosubstitution and tuning of photoluminescence in the Ca2(Al1–x Mgx)(Al1–xSi1+x)O7:Eu2+ phosphor. J. Am. Chem. Soc. 137, 12494–12497 (2015). https://doi.org/10.1021/jacs.5b08315

    Article  CAS  PubMed  Google Scholar 

  11. S. Kshetrapal, N.S. Ugemuge, K. Sharma, R. Nafdey, I.M. Nagpure, S.V. Moharil, Host sensitization of luminescence of lanthanide activators in NaBi(WO4)2. Radiat. Eff. Defects Solidsefects Solids 178, 1211–2123 (2023). https://doi.org/10.1080/10420150.2023.2240935

    Article  CAS  Google Scholar 

  12. Z. Piskuáa, K. Staninski, S. Lis, Luminescence properties of Tm3+/Yb3+, Er3+/Yb3+ and Ho3+/Yb3+ activated calcium tungstate. J. Rare Earths 29, 1166–1169 (2011). https://doi.org/10.1016/S1002-0721(10)60618-7

    Article  CAS  Google Scholar 

  13. Z. Wang, Y. Wanga, Y. Li, H. Zhang, Near-infrared quantum cutting in Tb 3+, Yb 3+ co-doped calcium tungstate via second-order down conversion. J. Mater. Res. 26, 693–696 (2011). https://doi.org/10.1557/jmr.2011.6

    Article  CAS  Google Scholar 

  14. W. Xu, X. Gao, L. Zheng, P. Wang, Z. Zhang, W. Cao, Optical thermometry through green upconversion emissions in Er3+/Yb3+-codoped CaWO4 phosphor. Appl. Phys. Express 5, 072201 (2012). https://doi.org/10.1143/APEX.5.072201

    Article  CAS  Google Scholar 

  15. W. Xu, H. Zhao, Y. Li, L. Zheng, Z. Zhang, W. Cao, Optical temperature sensing through the upconversion luminescence from Ho3+/Yb3+ codoped CaWO4. Sens. Actuators B 188, 1096–1100 (2013). https://doi.org/10.1016/j.snb.2013.07.094

    Article  CAS  Google Scholar 

  16. J. Sun, Y. Sun, C. Cao, Z. **a, H. Du, Near-infrared luminescence and quantum cutting mechanism in CaWO4: Nd3+, Yb3+. Appl. Phys. B 111, 367–371 (2013). https://doi.org/10.1007/s00340-013-5342-4

    Article  CAS  Google Scholar 

  17. A. Pusdekar, N.S. Ugemuge, R. Nafdey, P. Singh, I.M. Nagpure, S.V. Moharil, NIR emission from Nd3+ doped Sr3WO6 distorted triclinic phosphor. Radiat. Eff. Defects Solids 179, 315–328 (2024). https://doi.org/10.1080/10420150.2023.2271625

    Article  CAS  Google Scholar 

  18. J.C.G. Bünzli, C. Piguet, Taking advantage of luminescent lanthanide ions. Chem. Soc. Rev. 34, 1048–1077 (2005). https://doi.org/10.1039/B406082M

    Article  PubMed  Google Scholar 

  19. H. Zheng, D. Gao, Z. Fu, E. Wang, Y. Lei, Y. Tuan, M. Cui, Fluorescence enhancement of Ln3+ doped nanoparticles. J. Lumin. 131, 423–428 (2011). https://doi.org/10.1016/j.jlumin.2010.09.026

    Article  CAS  Google Scholar 

  20. A. Ródenas, D. Jaque, J.G. Solé, A. Speghini, M. Bettinelli, E. Cavalli, Energy transfer processes in the ytterbium doped NdPO4 stoichiometric crystal. Opt. Mater. 28, 1280–1283 (2006). https://doi.org/10.1016/j.optmat.2006.01.023

    Article  CAS  Google Scholar 

  21. A. Majchrowski, T. Łukasiewicz, J. Kisielewski, M. Świrkowicz, I.V. Kityk, A.H. Reshak, Laser stimulated bistability in the Yb doped Nd gallate. Mater. Lett. 63, 1410–1412 (2009). https://doi.org/10.1016/j.matlet.2009.03.029

    Article  CAS  Google Scholar 

  22. M. Świrkowicz, A. Kłos, T. Łukasiewicz, M.G. Brik, A. Majchrowski, I.V. Kityk, Photothermally induced bistability of emission of Yb-doped Ca4NdO(BO3)3 single crystals. Spectrosc. Lett. 43, 389–392 (2010). https://doi.org/10.1080/00387010.2010.487005

    Article  CAS  Google Scholar 

  23. P. Lacovara, H.K. Choi, C.A. Wang, R.L. Aggarwal, T.Y. Fan, Room-temperature diode-pumped Yb: YAG laser. Opt. Lett. 16, 1089–1091 (1991). https://doi.org/10.1364/OL.16.001089

    Article  CAS  PubMed  Google Scholar 

  24. S.A. Payne, L.D. Deloach, L.K. Smith, W.L. Kway, J.B. Tassano, W.F. Krupke, Ytterbium-doped apatite-structure crystals: a new class of laser materials. J. Appl. Phys. 76, 497–503 (1994). https://doi.org/10.1063/1.357101

    Article  CAS  Google Scholar 

  25. N.V. Kuleshov, A.A. Lagatsky, V.G. Shcherbitsky, V.P. Mikhailov, E. Heumann, T. Jensen, A. Diening, G. Huber, CW laser performance of Yb and Er, Yb doped tungstates. Appl. Phys. B 64, 409–413 (1997). https://doi.org/10.1007/s003400050191

    Article  CAS  Google Scholar 

  26. D.C. Hanna, R.M. Percival, I.R. Perry, R.G. Smart, P.J. Sunit, A.C. Tropper, An ytterbium-doped monomode fibre laser: broadly tunable operation from 1· 010 μm to 1· 162 μm and three-level operation at 974 nm. J. Mod. Opt. 37, 517–525 (1990). https://doi.org/10.1080/09500349014550601

    Article  CAS  Google Scholar 

  27. S. Jetschke, S. Unger, A. Schwuchow, M. Leich, J. Kirchhof, Efficient Yb laser fibers with low photo darkening by optimization of the core composition. Opt. Express 16, 15540–15545 (2008). https://doi.org/10.1364/OE.16.015540

    Article  CAS  PubMed  Google Scholar 

  28. L. **a, Z. Lin, S. Sun, Q. He, F. Wang, C. Yu, L. Hu, Q. Yang, Temperature dependence of energy transfer between Nd3+ and Yb3+ ions in phosphate glass. Appl. Opt. 58, 5262–5266 (2019). https://doi.org/10.1364/AO.58.005262

    Article  CAS  PubMed  Google Scholar 

  29. I. Sokólska, I. Pracka, T. Łukasiewicz, Growth and spectroscopic properties of LiNbO3 single crystals doped with Nd3+ and Yb3+ ions. J. Cryst. Growth 198, 521–525 (1999). https://doi.org/10.1016/S0022-0248(98)01087-2

    Article  Google Scholar 

  30. N. Zhuang, X. Hu, B. Zhao, J. Chen, X. Lin, J. Chen, Growth and spectroscopic investigation of Nd, Yb: GdVO4 single crystal. J. Cryst. Growth 271, 151–158 (2004). https://doi.org/10.1016/j.jcrysgro.2004.07.041

    Article  CAS  Google Scholar 

  31. Y. Shi, S. Feng, C. Cao, Hydrothermal synthesis and characterization of Bi2MoO6 and Bi2WO6. Mater. Lett. 44, 215–218 (2000). https://doi.org/10.1016/S0167-577X(00)00030-6

    Article  CAS  Google Scholar 

  32. S.-H. Yu, B. Liu, M.-S. Mo, J.-H. Huang, X.-M. Liu, Y.-T. Qian, General synthesis of single-crystal tungstate nanorods/nanowires: a facile, low-temperature solution approach. Adv. Funct. Mater. 13, 639–647 (2003). https://doi.org/10.1002/adfm.200304373

    Article  CAS  Google Scholar 

  33. M. Tyagi, S.G. Singh, Sangeeta, Appl. Opt. 48, 3225–3231 (2009)

    Article  CAS  PubMed  Google Scholar 

  34. P.A. Loiko, K.V. Yumashev, N.V. Kuleshov, V.G. Savitski, S. Calvez, D. Burns, A.A. Pavlyuk, Thermal lens study in diode pumped Ng-and Np-cut Nd: KGd(WO4)2 laser crystals. Opt. Express 17, 23536–23543 (2009). https://doi.org/10.1364/OE.17.023536

    Article  CAS  PubMed  Google Scholar 

  35. X. Huang, G. Wang, Growth and optical characteristics of Yb3+: β-LiY(WO4)2 crystal. Opt. Mater. 31, 919–922 (2009). https://doi.org/10.1016/j.optmat.2008.10.045

    Article  CAS  Google Scholar 

  36. A. Gupta, P. Singh, C.B. Mullins, J.B. Goodenough, Investigation of reversible li insertion into LiY(WO4)2. Chem. Mater. 28, 4641–4645 (2016). https://doi.org/10.1021/acs.chemmater.6b01341

    Article  CAS  Google Scholar 

  37. L. Zhou, W. Wang, S. Yu, B. Nan, Y. Zhu, Y. Shi, H. Shi, X. Zhao, Z. Lu, Single-phase LiY(MoO4)2–x(WO4)x:Dy3+, Eu3+ phosphors with white luminescence for white LEDs. Mater. Res. Bull. 84, 429–436 (2016). https://doi.org/10.1016/j.materresbull.2016.08.028

    Article  CAS  Google Scholar 

  38. J.M. Postema, W.T. Fu, D.J.W. IJdo, Crystal structure of LiLnW2O8 (Ln= lanthanides and Y): an X-ray powder diffraction study. J. Solid State Chem. 184, 2004–2008 (2011). https://doi.org/10.1016/j.jssc.2011.05.046

    Article  CAS  Google Scholar 

  39. A. Pusdekar, N.S. Ugemuge, A.A. Mistry, C. Gayner, S.V. Moharil, Synthesis and luminescence properties of intensely red-emitting Na5Y(WO4)4:Eu3+ phosphor. J. Mater. Sci. 35, 336 (2024). https://doi.org/10.1007/s10854-024-12053-1

    Article  CAS  Google Scholar 

  40. J.P.M. Van Vliet, G. Blasse, L.H. Brixner, Luminescence properties of alkali europium double tungstates and molybdates AEuM2O8. J. Solid State Chem. 76, 160–166 (1988). https://doi.org/10.1016/0022-4596(88)90203-4

    Article  Google Scholar 

  41. A.S. Kumarana, A.L. Chandrua, S.M. Babua, M. Ichimura, Growth and characterization of pure and doped KY(WO4)2 crystals. J. Cryst. Growth 275, 1901–1905 (2005). https://doi.org/10.1016/j.jcrysgro.2004.11.272

    Article  CAS  Google Scholar 

  42. F.B. **ong, H.F. Lin, L.J. Wang, X.G. Meng, W.Z. Zhu, White light emission in host-sensitized Dy3+-single-doped NaIn(WO4)2 phosphors. Phys. B 459, 41–45 (2015). https://doi.org/10.1016/j.physb.2014.11.100

    Article  CAS  Google Scholar 

  43. L.S. Cavalcante, M.A.P. Almeida, W. Avansi Jr., R.L. Tranquilin, E. Longo, N.C. Batista, V.R. Mastelaro, M.S. Li, Cluster coordination and photoluminescence properties of α-Ag2WO4 microcrystals. Inorg. Chem. 51, 10675–10687 (2012). https://doi.org/10.1021/ic300948n

    Article  CAS  PubMed  Google Scholar 

  44. H. Hitha, M. John, A. Jose, S. Kuriakose, T. Varghese, Influence of Bi3+ do** on structural, optical and photocatalytic degradation properties of NiWO4 nanocrystals. J. Solid State Chem. 295, 121892 (2021). https://doi.org/10.1016/j.jssc.2020.121892

    Article  CAS  Google Scholar 

  45. A.K. Ambast, A.K. Kunti, S. Som, S.K. Sharma, Near-white-emitting phosphors based on tungstate for phosphor-converted light-emitting diodes. Appl. Opt. 52, 8424–8431 (2013). https://doi.org/10.1364/AO.52.008424

    Article  CAS  PubMed  Google Scholar 

  46. D. Song, C. Guo, J. Zhao, H. Suo, X. Zhao, X. Zhou, G. Liu, Host sensitized near-infrared emission in Nd3+-Yb3+ co-doped Na2GdMg2V3O12 phosphor. Ceram. Int. 42, 12988–12994 (2016). https://doi.org/10.1016/j.ceramint.2016.05.072

    Article  CAS  Google Scholar 

  47. Q. **ao, W. Chen, Ultraviolet to near-infrared conversion in Nd3+ doped strontium cerate nanophosphors. J. Alloys Compd. 631, 272–275 (2015). https://doi.org/10.1016/j.jallcom.2015.01.133

    Article  CAS  Google Scholar 

  48. A. Pusdekar, N.S. Ugemuge, R.A. Nafdey, S.V. Moharil, Near-infrared Emission in Na5Y(WO4)4:Nd3+. Phys. Solid State 65, 1929–1933 (2023)

    Google Scholar 

  49. G.N. Warutkar, N.S. Ugemuge, K. Sharma, R. Nafdey, S.V. Moharil, Nd3+ emission in the garnet structure of LiCa3ZnV3O12 phosphor. Radiat. Eff. Defects Solids 178, 1–11 (2023). https://doi.org/10.1080/10420150.2023.2258435

    Article  CAS  Google Scholar 

  50. R.C. Powell, G. Blasse, Energy transfer in concentrated systems, in Luminescence and Energy Transfer. (Springer Berlin Heidelberg, Berlin, Heidelberg, 2005), pp.43–96. https://doi.org/10.1007/3-540-10395-3_2

    Chapter  Google Scholar 

  51. L. Ozawa, P.M. Jaffe, The mechanism of the emission color shift with activator concentration in +3 activated phosphors. J. Electrochem. Soc. 118, 1678 (1971). https://doi.org/10.1149/1.2407810

    Article  CAS  Google Scholar 

  52. D. Chen, Y. Yu, H. Lin, P. Huang, Z. Shan, Y. Wang, Ultraviolet-blue to near-infrared downconversion of Nd3+-Yb3+ couple. Opt. Lett. 35, 220–222 (2010). https://doi.org/10.1364/OL.35.000220

    Article  CAS  PubMed  Google Scholar 

  53. J.M. Meijer, L. Aarts, B.M. van der Ende, T.J.H. Vlugt, A. Meijerink, Down conversion for solar cells in YF3: Nd3+, Yb3+. Phys. Rev. B 81, 035107 (2010). https://doi.org/10.1103/PhysRevB.81.035107

    Article  CAS  Google Scholar 

  54. L. Liu, M. Li, S. Cai, Y. Yang, Y. Mai, Near-infrared quantum cutting in Nd3+ and Yb3+ doped BaGd2ZnO5 phosphors. Opt. Mater. Express 5, 756–763 (2015). https://doi.org/10.1364/OME.5.000756

    Article  CAS  Google Scholar 

  55. W. Li, T. Chen, W. **a, X. Yang, S. **ao, Near-infrared emission of Yb3+ sensitized by Mn4+ in La2MgTiO6. J. Lumin. 194, 547–550 (2018). https://doi.org/10.1016/j.jlumin.2017.04.063

    Article  CAS  Google Scholar 

  56. A. Vyas, C.P. Joshi, P.D. Sahare, S.V. Moharil, NIR emission in Ba2SiO4: Eu2+, Nd3+ phosphors with near UV/violet excitation. J. Alloys Compd. 743, 789–794 (2018). https://doi.org/10.1016/j.jallcom.2018.01.127

    Article  CAS  Google Scholar 

  57. M.O. Ramirez, D. Jaque, L.E. Bausá, I.R. Martín, F. Lahoz, E. Cavalli, A. Speghini, M. Bettinelli, Temperature dependence of Nd3+↔ Yb3+ energy transfer in the YAl3(BO3)4 nonlinear laser crystal. J. Appl. Phys. (2005). https://doi.org/10.1063/1.1886887

    Article  Google Scholar 

Download references

Acknowledgements

Vesta, an open-source program, is used to create crystal structures that display the existence of every component in the compound.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Ankit Mungale: Data collection, writing–original draft, investigation, visualization. Dr. S.A.Shah: conceptualization, editing, analysis and discussion. Ashvini Pusdekar: data collection, investigation, visualization. Dr. Nilesh Ugemuge: conceptualization, editing, analysis and discussion. Dr. Shilpa Kulkarni: conceptualization, editing, analysis and discussion. Prof. Sanjiv Moharil: conceptualization, editing, analysis and discussion. All authors have directly participated in planning and agree to publish this manuscript.

Corresponding authors

Correspondence to S. A. Shah or N. S. Ugemuge.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mungale, A., Shah, S.A., Pusdekar, A. et al. Near infrared emission in Nd3+ and Nd3+/Yb3+co-doped LiY(WO4)2 phosphor. J Mater Sci: Mater Electron 35, 1391 (2024). https://doi.org/10.1007/s10854-024-13151-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-13151-w

Navigation