Log in

Li1.5Al0.5Zr1.5(PO4)3-coated Li1.2Mn0.54Ni0.13Co0.13O2 cathode materials with high lithium-ion diffusion rate and long cycling stability for lithium-ion batteries

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Lithium rich-layered oxides have attracted widespread attention due to their high specific capacity and high energy density. However, severe lithium nickel mixing, poor lithium-ion migration rate, and surface side reactions greatly limit their development. Li1.2Mn0.54Ni0.13Co0.13O2 with different contents of Li1.5Al0.5Zr1.5(PO4)3 (LAZPO-LMNCO) is synthesized by wet chemistry and high-temperature solid-phase method. Fast lithium-ion conductor LAZPO coating effectively suppresses side reactions between the electrolyte and LMNCO surface and stabilizes the layered structure, which reduces lithium nickel mixing and increases the migration rate of lithium ions, thereby improving cycling stability. Lithium-ion diffusion coefficient of 3 wt% LAZPO-LMNCO electrode reaches 5.8 times that of pristine LMNCO. At 1C, the 3 wt% LAZPO-LMNCO electrode provides a capacity retention rate of 90.4% after 250 cycles, compared to 82.8% of LMNCO after 100 cycles. Even a high rate of 5C, it still maintains a capacity retention rate of 88.4% after 350 cycles. This work provides an effective method for reducing surface side reactions and improving electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Data availability

All data generated or analyzed for this study are included in this published article [and its supplementary information file].

References

  1. T.H. Wu, X. Zhang, Y.Z. Wang, N. Zhang, H.F. Li, Y. Guan, D.D. **ao, S.Q. Liu, H.J. Yu, Gradient “single-crystal” Li-Rich cathode materials for high-stable lithium-ion batteries. Adv. Funct. Mater. (2023). https://doi.org/10.1002/adfm.202210154

    Article  Google Scholar 

  2. Z.G. Tai, X.L. Li, W. Zhu, M. Shi, Y.F. **n, S.W. Guo, Y.F. Wu, Y.Z. Chen, Y.N. Liu, Nonstoichiometry of Li-rich cathode material with improved cycling ability for lithium-ion batteries. J. Coll. Interface Sci. 570, 264–272 (2020)

    Article  CAS  Google Scholar 

  3. X.Q. Zeng, M. Li, D. Abd El-Hady, W. Alshitari, A.S. Al-Bogami, J. Lu, K. Amine, Commercialization of lithium battery technologies for electric vehicles. Adv. Energy Mater. (2019). https://doi.org/10.1002/aenm.201900161

    Article  Google Scholar 

  4. Z. Ahaliabadeh, X.Z. Kong, E. Fedorovskaya, T. Kallio, Extensive comparison of do** and coating strategies for Ni-rich positive electrode materials. J. Power. Sources (2022). https://doi.org/10.1016/j.jpowsour.2022.231633

    Article  Google Scholar 

  5. F. Wu, W. Li, L. Chen, Y. Su, L. Bao, W. Bao, Z. Yang, J. Wang, Y. Lu, S. Chen, Renovating the electrode-electrolyte interphase for layered lithium— and manganese-rich oxides. Energy Storage Mater. 28, 383–392 (2020)

    Article  Google Scholar 

  6. F.L. Wu, G.T. Kim, M. Kuenzel, H. Zhang, J. Asenbauer, D. Geiger, U. Kaiser, S. Passerini, Elucidating the effect of iron do** on the electrochemical performance of cobalt-free lithium-rich layered cathode materials. Adv. Energy Mater. (2019). https://doi.org/10.1002/aenm.201902445

    Article  Google Scholar 

  7. Z. Yang, C.L. Zheng, Z.C. Wei, J.J. Zhong, H.R. Liu, J.M. Feng, J.L. Li, F.Y. Kang, Multi-dimensional correlation of layered Li-rich Mn-based cathode materials. Energy Mater. (2022). https://doi.org/10.20517/energymater.2022.02

    Article  Google Scholar 

  8. J. Eom, M.G. Kim, J. Cho, Storage characteristics of LiNi0.8Co0.1+xMn0.1-xO2 (x=0, 0.03, and 0.06) cathode materials for lithium batteries. J. Electrochem. Soc. 155, A239–A245 (2008)

    Article  CAS  Google Scholar 

  9. J. Zeng, S.F. Liu, Research on aging mechanism and state of health prediction in lithium batteries. J. Energy Storage (2023). https://doi.org/10.1016/j.est.2023.108274

    Article  Google Scholar 

  10. Y.H. Qiu, X.F. Peng, L.C. Zhou, J. Yan, Y.C. Song, L.N. Bi, X. Long, L. He, Q.Y. **e, S.Z. Wang, J.X. Liao, Building ultrathin Li4Mn5O12 shell for enhancing the stability of cobalt-free lithium-rich manganese cathode materials. Batter-Basel (2023). https://doi.org/10.3390/batteries9020123

    Article  Google Scholar 

  11. G. Wang, C.H. **e, H. Wang, Q. Li, F.J. **a, W.H. Zeng, H.Y. Peng, G. Van Tendeloo, G.J. Tan, J.S. Tian, J.S. Wu, Mitigated oxygen loss in lithium-rich manganese-based cathode enabled by strong Zr-O affinity. Adv. Funct. Mater. (2024). https://doi.org/10.1002/adfm.202313672

    Article  PubMed  Google Scholar 

  12. Y.Q. Kang, X.G. Guo, Z.W. Guo, J.G. Li, Y.N. Zhou, Z. Liang, C.P. Han, X.M. He, Y. Zhao, N. Tavajohi, B.H. Li, Phosphorus-doped lithium- and manganese-rich layered oxide cathode material for fast charging lithium-ion batteries. J. Energy Chem. 62, 538–545 (2021)

    Article  CAS  Google Scholar 

  13. J.L. Li, J.W. Zhao, C.J. Tang, T.K. Jia, J.H. Hou, C.B. Cao, Y.Q. Zhu, Mitigating voltage decay of Li-Rich layer oxide cathode material via an ultrathin “lithium ion pump” heteroepitaxial surface modification. J. Power Sour. (2021). https://doi.org/10.1016/j.jpowsour.2021.230427

    Article  Google Scholar 

  14. X.H. Zhai, P.P. Zhang, H. Huang, J.F. Zhou, C. Liang, B.M. Chen, Y.P. He, Z.C. Guo, Surface grafting SiO2 on lithium-rich layered oxide cathode material for improving structural stability. J. Electrochem. Soc. (2021). https://doi.org/10.1149/1945-7111/ac0948

    Article  Google Scholar 

  15. C. Song, W. Feng, Z. Shi, Z. Huang, Coating TiO 2 on lithium-rich Li 1.2 Mn 0.54 Ni 0.13 Co 0.13 O 2 material to improve its electrochemical performance. Ionics 27, 457–468 (2021)

    Article  CAS  Google Scholar 

  16. J. Cao, Y. Li, L.J. Wang, J. Li, Y.M. Qiao, L.P. Zhu, S.N. Zhang, X.X. Yan, H.Q. **e, Enhanced electrochemical performances of Li1.2Ni0.13Co0.13Mn0.54O2 cathode material coated with ZrO2. Ionics 29, 51–60 (2023)

    Article  CAS  Google Scholar 

  17. C.M. Jiao, M. Wang, B. Huang, M.X. Zhang, G.D. Xu, Y.X. Liu, Y.F. Zhao, X.B. Hu, Surface modification single crystal Li-rich Li1.2Mn0.54Ni0.13Co0.13O2 as high performance cathode materials for Li-ion batteries. J. Alloy. Compd. (2023). https://doi.org/10.1016/j.jallcom.2022.168389

    Article  Google Scholar 

  18. N. Zhang, Y. Li, Y.D. Luo, Z. Yang, J.Y. Lu, Impact of LiTi2(PO4)3 coating on the electrochemical performance of Li1.2Ni0.13Mn0.54Co0.13O2using a wet chemical method. Ionics 27, 1465–1475 (2021)

    Article  CAS  Google Scholar 

  19. H. Yang, J. Wang, C. Xu, K. Wu, F. Zou, X. Hu, Z. Hu, LiZr2 (PO4)3 surface coating towards stable layer structure Li1.2Mn0.54Ni0.13Co0.13O2 cathode materials with long cycle performance. Nano Res. Res. 16(2), 2373–2382 (2023)

    Article  CAS  Google Scholar 

  20. A. Rossbach, F. Tietz, S. Grieshammer, Structural and transport properties of lithium-conducting NASICON materials. J. Power. Sour. 391, 1–9 (2018)

    Article  CAS  Google Scholar 

  21. S.Q. Chen, C. Wu, L.F. Shen, C.B. Zhu, Y.Y. Huang, K. **, J. Maier, Y. Yu, Challenges and perspectives for NASICON-type electrode materials for advanced sodium-ion batteries. Adv. Mater. (2017). https://doi.org/10.1002/adma.201700431

    Article  PubMed  PubMed Central  Google Scholar 

  22. G.X. Wang, D.H. Bradhurst, S.X. Dou, H.K. Liu, LiTi2(PO4)3 with NASICON-type structure as lithium-storage materials. J. Power. Sour. 124, 231–236 (2003)

    Article  CAS  Google Scholar 

  23. H. Yang, H. He, X. **. J. Solid State Chem. (2023). https://doi.org/10.1016/j.jssc.2023.124210

    Article  Google Scholar 

  24. Y. Fan, W. Zhang, Y. Zhao, Z. Guo, Q. Cai, Fundamental understanding and practical challenges of lithium-rich oxide cathode materials: layered and disordered-rocksalt structure. Energy Storage Mater. 40, 51–71 (2021)

    Article  Google Scholar 

  25. Q. Li, D. Zhou, L. Zhang, D. Ning, Z. Chen, Z. Xu, R. Gao, X. Liu, D. **e, G. Schumacher, X. Liu, Tuning anionic redox activity and reversibility for a high-capacity Li-Rich Mn-based oxide cathode via an integrated strategy. Adv. Funct. Mater. (2019). https://doi.org/10.1002/adfm.201806706

    Article  PubMed  PubMed Central  Google Scholar 

  26. M. Xu, Z.Y. Chen, L.J. Li, H.L. Zhu, Q.F. Zhao, L. Xu, N.F. Peng, L. Gong, Highly crystalline alumina surface coating from hydrolysis of aluminum isopropoxide on lithium-rich layered oxide. J. Power. Sour. 281, 444–454 (2015)

    Article  CAS  Google Scholar 

  27. M. Han, J.Y. Jiao, Z.P. Liu, X. Shen, Q.H. Zhang, H.J. Lin, C.T. Chen, Q.Y. Kong, W.K. Pang, Z.P. Guo, R.C. Yu, L. Gu, Z.W. Hu, Z.X. Wang, L.Q. Chen, Eliminating transition metal migration and anionic redox to understand voltage hysteresis of lithium-rich layered oxides. Adv. Energy Mater. (2020). https://doi.org/10.1002/aenm.201903634

    Article  Google Scholar 

  28. T.Y. Li, X.Z. Yuan, L. Zhang, D.T. Song, K.Y. Shi, C. Bock, Degradation mechanisms and mitigation strategies of Nickel-Rich NMC-based lithium-ion batteries. Electrochem. Energy Rev. 3, 43–80 (2020)

    Article  Google Scholar 

  29. J. Wang, Q. Yuan, R. Wang, G.Q. Tan, Y.F. Su, D.H. Li, F. Wu, (2019) Iop, Providing A Long-term Protection for NCM811 Cathode Material by Al2O3 Coating Layer, 7th Annual International Conference on Material Science and Environmental Engineering (MSEE), Wuhan, PEOPLES R CHINA,.

  30. L. Qiu, Y. Song, M.K. Zhang, Y.H. Liu, Z.W. Yang, Z.G. Wu, H. Zhang, W. **ang, Y.X. Liu, G.K. Wang, Y. Sun, J. Zhang, B. Zhang, X.D. Guo, Structural reconstruction driven by oxygen vacancies in layered Ni-Rich cathodes. Adv. Energy Mater. (2022). https://doi.org/10.1002/aenm.202200022

    Article  Google Scholar 

  31. Q. Xu, X.F. Li, H.M.K. Sari, W.B. Li, W. Liu, Y.C. Hao, J. Qin, B. Cao, W. **ao, Y. Xu, Y. Wei, L. Kou, Z.Y. Tian, L. Shao, C. Zhang, X.L. Sun, Surface engineering of LiNi0.8Mn0.1Co0.1O2 towards boosting lithium storage: Bimetallic oxides versus monometallic oxides. Nano Energy 77, 105034 (2020)

    Article  CAS  Google Scholar 

  32. M.M.S. Sanad, N.K. Meselhy, H.A. El-Boraey, Surface protection of NMC811 cathode material via ZnSnO3 perovskite film for enhanced electrochemical performance in rechargeable Li-ion batteries. Coll. Surf. Physicochem. Eng. Asp. 672, 131748 (2023)

    Article  CAS  Google Scholar 

  33. S.D. Dong, Y. Zhou, C.X. Hai, J.B. Zeng, Y.X. Sun, Y.F. Ma, Y. Shen, X. Li, X.F. Ren, C. Sun, G.T. Zhang, Z.W. Wu, Enhanced cathode performance: mixed Al2O3 and LiAlO2 coating of Li1.2Ni0.13Co0.13Mn0.54O2. Acs Appl. Mater. Interfaces. 12, 38153–38162 (2020)

    Article  CAS  PubMed  Google Scholar 

  34. P.G. Schiavi, R. Zanoni, M. Branchi, C. Marcucci, C. Zamparelli, P. Altimari, M.A. Navarra, F. Pagnanelli, Upcycling real waste mixed lithium-ion batteries by simultaneous production of rGO and lithium-manganese-rich cathode material. Acs Sustain. Chem. Eng. 9, 13303–13311 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Z.H. Yang, H.M. Zhou, Z.Q. Bao, J. Li, C.J. Yin, Enhanced rate capability and cycling stability of lithium-rich cathode material Li1.2Ni0.2Mn0.6O2 via H3PO4 pretreating and accompanying Li3PO4 coating. J. Mater. Sci.-Mater. Electron. 30, 19493–19504 (2019)

    Article  CAS  Google Scholar 

  36. A. Panda, J. Patra, C.T. Hsieh, Y.C. Huang, Y.A. Gandomi, C.C. Fu, M.H. Lin, R.S. Juang, E.K. Chang, Improving high-temperature performance of lithium-rich cathode by roll-to-roll atomic layer deposition of titania nanocoating for lithium-ion batteries. J. Energy Storage (2021). https://doi.org/10.1016/j.est.2021.103348

    Article  Google Scholar 

  37. H. Lei, S. **, L. Jiayi, X. Wentao, Y. Chengsong, Q. Jiaxin, J. Qi, Construction of rod-like micro/nano structure and its effects on the electrochemical energy storage performance of lithium-rich manganese-based cathode material. J. Mater. Sci.-Mater. Electron. (2024). https://doi.org/10.1007/s10854-024-12732-z

    Article  Google Scholar 

  38. S.K. Chong, Y.N. Liu, W.W. Yan, Y.Z. Chen, Effect of valence states of Ni and Mn on the structural and electrochemical properties of Li1.2NixMn0.8-xO2 cathode materials for lithium-ion batteries. Rsc Adv. 6, 53662–53668 (2016)

    Article  CAS  Google Scholar 

  39. Q.X. Ma, M.Q. Yang, J.X. Meng, L.F. Zhou, L.S. Xu, F.R. Wang, T.K. Sun, R.H. Li, S.W. Zhong, Q. Zhang, X.F. Rao, T.F. Liu, Interfacial-engineering-enabled high-performance Li-rich cathodes. Chem. Eng. J. 485, 149546 (2024)

    Article  CAS  Google Scholar 

  40. C.S. Xu, H.T. Yu, C.F. Guo, Y. **e, N. Ren, T.F. Yi, G.X. Zhang, Surface modification of Li1.2Mn0.54Ni0.13Co0.13O2 via an ionic conductive LiV3O8 as a cathode material for Li-ion batteries. Ionics 25, 4567–4576 (2019)

    Article  CAS  Google Scholar 

  41. S.Q. Yang, H.X. Wei, L.B. Tang, C. Yan, J.H. Li, Z.J. He, Y.J. Li, J.C. Zheng, J. Mao, K. Dai, Fast Li-ion conductor Li1+ yTi2-yAly (PO4)3 modified Li1 2 [Mn0.54Ni0.13Co0.13] O2 as high performance cathode material for Li-ion battery. Ceram. Int. 47(13), 18397–18404 (2021)

    Article  CAS  Google Scholar 

  42. J. Zeng, Y. Liu, J. Wu, Y. Cui, A. Baker, D. Qu, H. Zhang, M. Lavorgna, X. Zhang, Enhanced lithium diffusion of layered lithium-rich oxides with LixMn1.5Ni0.5O4 nanoscale surface coating. Electrochim. ActaActa. 247, 617–625 (2017)

    Article  CAS  Google Scholar 

  43. L. Zhou, Y. Wu, J. Huang, X. Fang, T. Wang, W. Liu, Y. Wang, Y. **, X. Tang, Enhanced electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material coated with Li+-conductive Li2SiO3 for lithium ion batteries. J. Alloy. Compd. 724, 991–999 (2017)

    Article  CAS  Google Scholar 

  44. J. Wang, K. Wu, C. Xu, X. Hu, L. Qiu, LiNbO3-coated Li12 Mn0.54 Ni0.13 Co0.13 O2 as a cathode material with enhanced electrochemical performances for lithium-ion batteries. J. Mater. Sci. Mater. Electron. 32, 28223–28233 (2021)

    Article  CAS  Google Scholar 

  45. J.R. Chen, S. Cao, Z. Li, H. Li, C.M. Guo, R.J. Wang, L. Wu, Y.X. Zhang, Y.S. Bai, X.Y. Wang, Lithium-ion conductor Li2ZrO3-coated primary particles to optimize the performance of Li-rich Mn-based cathode materials. ACS Appl. Mater. Interfaces 15, 36394–36403 (2023)

    Article  CAS  PubMed  Google Scholar 

  46. Y.Y. Liu, Z. Yang, J.J. Zhong, J.L. Li, R.R. Li, Y. Yu, F.Y. Kang, Surface-functionalized coating for Lithium-rich cathode material to achieve Ultra-High rate and excellent cycle performance. ACS Nano 13, 11891–11900 (2019)

    Article  CAS  PubMed  Google Scholar 

  47. S.Q. Yang, P.B. Wang, H.X. Wei, L.B. Tang, X.H. Zhang, Z.J. He, Y.J. Li, H. Tong, J.C. Zheng, Li4V2Mn (PO4) 4-stablized Li [Li0.2Mn0.54Ni0.13Co0.13] O2 cathode materials for lithium ion batteries. Nano Energy 63, 103889 (2019)

    Article  CAS  Google Scholar 

  48. Y. Wei, J. Cheng, D. Li, Y. Li, Z. Zeng, H. Liu, H. Zhang, F. Ji, X. Geng, J. Lu, L. Ci, A structure self-healing Li-rich cathode achieved by lithium supplement of Li-rich LLZO coating. Adv. Funct. Mater. (2023). https://doi.org/10.1002/adfm.202214775

    Article  Google Scholar 

  49. W.H. Yu, Y.Y. Wang, A.M. Wu, A.K. Li, Z.W. Qiu, X.F. Dong, C. Dong, H. Huang, Suppress oxygen evolution of lithium-rich manganese-based cathode materials via an integrated strategy. Green Energy Environ. 9, 138–151 (2024)

    Article  CAS  Google Scholar 

  50. Z.C. Lv, F.F. Wang, J.C. Wang, P.F. Wang, T.F. Yi, Durable lithium-ion insertion/extraction and migration behavior of LiF-encapsulated cobalt-free lithium-rich manganese-based layered oxide cathode. J. Coll. Interface Sci. 649, 175–184 (2023)

    Article  CAS  Google Scholar 

  51. S.H. Yuan, H.Z. Zhang, D.W. Song, Y. Ma, X.X. Shi, C.L. Li, L.Q. Zhang, Regulate the lattice oxygen activity and structural stability of lithium-rich layered oxides by integrated strategies. Chem. Eng. J. 439, 135677 (2022)

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by an Open project of the Key Laboratory of Catalysis Science and Technology of Chongqing Education Commission (Chongqing Technology and Business University, KFJJ2022012), Chongqing Natural Science Foundation (CSTB2023NSCQ-LZX0039), and the Key Project of Chongqing Technology Innovation and Application Development (CSTB2023TIAD-KPX0091).

Author information

Authors and Affiliations

Authors

Contributions

Yunwang Fu: synthesis, characterization, analysis, and manuscript preparation. Hongqin Liang: synthesis and characterization. Jie Wang: synthesis and data curation. Guoxing Wang: analysis. Wenyang Lei: project administration. Jie Li: methodology. Qiushi Huang: visualization. Xuebu Hu: resources, writing—review & editing, conceptualization and funding acquisition. Xuecheng Liu: writing—review & editing. Guilin Zhou: funding acquisition.

Corresponding author

Correspondence to Xuebu Hu.

Ethics declarations

Conflict of interests

The authors have no competing interests to declare relevant to this article’s content.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, Y., Liang, H., Wang, J. et al. Li1.5Al0.5Zr1.5(PO4)3-coated Li1.2Mn0.54Ni0.13Co0.13O2 cathode materials with high lithium-ion diffusion rate and long cycling stability for lithium-ion batteries. J Mater Sci: Mater Electron 35, 1343 (2024). https://doi.org/10.1007/s10854-024-13099-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-13099-x

Navigation