Log in

Electrochemical synthesis and dielectric performance of Sr-doped BaTiO3 nano-powders

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this paper, Sr-doped BaTiO3 nanoparticles were synthesized via electrochemical method, leading to the successful preparation of Ba0.67Sr0.33TiO3 (BST) powders. The phase composition and microstructure of the powders were characterized using X-ray diffraction small angle X-ray scattering, scanning electron microscopy (SEM), and transmission electron microscopy. The results show that the average grain size of the nanoparticles is in the range of 10–20 nm, and the particles with good crystallinity are obtained under the environment of 3 mol.L−1 NaOH concentration. Sintering at 1250 ℃ for 3 h yields nanoscale BST ceramics with a dense structure and an average grain size of about 300 nm. These fine-grained ceramic samples exhibit superior temperature stability compared to relatively coarser BST ceramics. Furthermore, due to their nanoscale grain size, extensive phase transitions result in a low dielectric constant as observed from the dielectric property data. This work presents a novel approach for preparing nanoscale powders and homogeneous ceramics applicable in various electronic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. H. Palneedi, M. Peddigari, G.T. Hwang, D.Y. Jeong, J. Ryu, High-performance dielectric ceramic films for energy storage capacitors: progress and outlook. J. Adv. Funct. Mater. 28, 1803665 (2018). https://doi.org/10.1002/adfm.201803665

    Article  CAS  Google Scholar 

  2. F. Boccardi, R.W. Heath, A. Lozano, L.T. Marzetta, P. Poppvski, Five disruptive technology directions for 5G. J. IEEE Commun. Mag. 52, 74–80 (2014). https://doi.org/10.1109/MCOM.2014.6736746

    Article  Google Scholar 

  3. B.B. Liu, X.H. Wang, L.T. Li, Properties and microstructure of superfine crystal barium titanate-based energy storage ceramics. J. Eng. Sci. 39, 896–902 (2017). https://doi.org/10.1016/j.mtcomm.2023.106439

    Article  CAS  Google Scholar 

  4. S.H. **, H.W. Lee, N.W. Kim, B.W. Lee, G.G. Lee, Y.W. Hong, H.W. Nam, Y.S. Lim, Sonochemically activated solid-state synthesis of BaTiO3 powders. J. Eur. Ceram. Soc. 41, 4826–4834 (2021). https://doi.org/10.1016/j.jeurceramsoc.2021.03.043

    Article  CAS  Google Scholar 

  5. P.J. Liu, Z.J. Yao, J.T. Zhou, Y.M. Li, Z.H. Yang, H.L. Lv, L.B. Kong, Small magnetic Co-doped NiZn ferrite/graphene nanocomposites and their dual-region microwave absorption performance. J. Mater. Chem. C 4, 9738–9749 (2016). https://doi.org/10.1039/C6TC03518C

    Article  CAS  Google Scholar 

  6. Z.B. Jiao, W.J. Huyan, F. Yang, J.R. Yao, R.Y. Tan, P. Chen, X.W. Tao, Z.J. Yao, J.T. Zhou, P.J. Liu, Achieving ultra-wideband and elevated temperature electromagnetic wave absorption via constructing lightweight porous rigid structure. Nano-Micro Lett. 14, 173 (2022). https://doi.org/10.1007/s40820-022-00904-7

    Article  CAS  Google Scholar 

  7. Y. Slimani, B. Unal, M.A. Almessiere, E. Hannachi, G. Yasin, A. Baykal, I. Ercan, Role of WO3 nanoparticles in electrical and dielectric properties of BaTiO3–SrTiO3 ceramicss. J. Mater. Sci. 31, 7786–7797 (2020). https://doi.org/10.1007/s10854-020-03317-7

    Article  CAS  Google Scholar 

  8. P. Duran, F. Capel, J. Tartaj, D. Gutierrez, C. Moure, Heating-rate effect on the BaTiO3 formation by thermal decomposition of metal citrate polymeric precursors. J. Solid State Ion. 141, 529–539 (2001). https://doi.org/10.1016/S0167-2738(01)00742-1

    Article  Google Scholar 

  9. V. Ischenko, E. Pippel, R. Koferstein, H.P. Abicht, J. Woltersdorf, Barium titanate via thermal decomposition of Ba, Ti-precursor complexes: The nature of the intermediate phases. J. Solid State Sci 9, 21–26 (2007). https://doi.org/10.1016/j.solidstatesciences.2006.09.004

    Article  CAS  Google Scholar 

  10. A.V. Zanfir, G. Voicu, S.I. **ga, E. Vasile, V. Ionita, Low-temperature synthesis of BaTiO3 nanopowders. J. Ceram. Int 42, 1672–1678 (2016). https://doi.org/10.1016/j.ceramint.2015.09.121

    Article  CAS  Google Scholar 

  11. M.M. Krzmanc, D. Klement, B. Jancar, D. Suvorov, Hydrothermal conditions for the formation of tetragonal BaTiO3 particles from potassium titanate and barium salt. J. Ceram. Int. 41, 15128–15137 (2015). https://doi.org/10.1016/j.ceramint.2015.08.085

    Article  CAS  Google Scholar 

  12. W.W. Wang, L.X. Cao, W. Liu, G. Su, W.X. Zhang, Low-temperature synthesis of BaTiO3 powders by the sol-gel-hydrothermal method. J. Ceram. Int. 39, 7127–7134 (2013). https://doi.org/10.1016/j.ceramint.2013.02.055

    Article  CAS  Google Scholar 

  13. L.J. Mi, Q.K. Zhang, H.W. Wang, Z.J. Wu, Y.X. Guo, Y.M. Li, X.Y. **ong, K.F. Liu, W.J. Fu, Y. Ma, B.Z. Wang, X.W. Qi, Synthesis of BaTiO3 nanoparticles by sol-gel assisted solid phase method and its formation mechanism and photocatalytic activity. J. Ceram. Int. 46, 10619–10633 (2020). https://doi.org/10.1016/j.ceramint.2020.01.066

    Article  CAS  Google Scholar 

  14. B.W. Dai, X.P. Hu, R.Q. Yin, W.F. Bai, W. Fei, L. Deng, J. Du, P. Zhang, H.B. Qin, Piezoelectric grain-size effects of BaTiO3 ceramics under different sintering atmospheres. J. Mater. Sci. Mater. Electron. 28, 7928–7934 (2017). https://doi.org/10.1007/s10854-017-6494-5

    Article  CAS  Google Scholar 

  15. P. Sapkota, S. Ueno, I. Fujii, G.P. Khanal, S.W. Kim, S.S., Wada, Influence of grain size effect and Ba/Ti ratios on dielectric, ferroelectric, and piezoelectric properties of BaTiO3 ceramics. J. Jpn. J. Appl. Phys. 58, SLLC05 (2019). https://doi.org/10.7567/1347-4065/ab3b1c

    Article  CAS  Google Scholar 

  16. B. Liu, Y. Wu, Y.H. Huang, K.X. Song, Y.J. Wu, Enhanced dielectric strength and energy storage density in BaTi0.7Zr0.3O3 ceramics via spark plasma sintering. J. Mater. Sci. 58, 4511–4517 (2018). https://doi.org/10.1007/s10853-018-3170-y

    Article  CAS  Google Scholar 

  17. J.T. Tao, J.F. Ma, Y.G. Wang, X.Y. Zhu, J. Liu, X.H. Jiang, B.T. Lin, Y. Ren, Synthesis of barium titanate nanoparticles via a novel electrochemical route. J. Mater. Res. Bull. 43, 639–644 (2008). https://doi.org/10.1016/j.materresbull.2007.04.007

    Article  CAS  Google Scholar 

  18. P.J. Liu, V.M.H. Ng, Z.J. Yao, J.T. Zhou, Y.M. Lei, Z.H. Yang, H.L. Lv, L.B. Kong, Facile synthesis and hierarchical assembly of flowerlike NiO structures with enhanced dielectric and microwave absorption properties. ACS. Appl. Mater. Interf. 9, 16404–16416 (2017). https://doi.org/10.1021/acsami.7b02597

    Article  CAS  Google Scholar 

  19. G. Arlt, D. Hennings, G. De, With, Dielectric properties of fine-grained barium titanate ceramics. J. Appl. Phys. 58, 1619–1625 (1985). https://doi.org/10.1063/1.336051

    Article  CAS  Google Scholar 

  20. W.R. Buessem, L.E. Cross, A.K. Goswaml, Phenomenological theory of high permittivity in fine-grained barium titanate. J. Am. Ceram. Soc. 49, 33–36 (1966). https://doi.org/10.1111/j.1151-2916.1966.tb13144.x

    Article  CAS  Google Scholar 

  21. A.J. Bell, A.J. Moulson, L.E. Cross, The effect of grain size on the permittivity of BaTiO3. Ferroelectrics 54, 147–150 (1984). https://doi.org/10.1080/00150198408215837

    Article  Google Scholar 

  22. Z.H. Yao, H.X. Liu, Y. Liu, Z.H. Wu, Z.Y. Shen, Y. Liu, M.G. Cao, Structure and dielectric behavior of Nd-doped BaTiO3 perovskites. Mater. Chem. Phys. 109, 475–481 (2008). https://doi.org/10.1016/j.matchemphys.2007.12.019

    Article  CAS  Google Scholar 

Download references

Funding

The authors acknowledgements the financial support from the 2019 Project of Liaoning Education Department (Grant No. 2019FWDF01).

Author information

Authors and Affiliations

Authors

Contributions

Writing—original draft preparation: [Shuai Yan]; Writing—review and editing: [Sen Wang]; Conceptualization: [Wencai Hu]; Writing—review and editing: [Gaobin Liu].

Corresponding author

Correspondence to Sen Wang.

Ethics declarations

Conflict of interest

No conflict of interest exists in the submission of this manuscript, and the manuscript has been approved by all authors for publication. I would like to declare on behalf of my co-authors that the work described was original research that has not been published previously or is under consideration for publication elsewhere, in whole or in part. All the authors listed have approved the manuscript that is enclosed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, S., Hu, W., Wang, S. et al. Electrochemical synthesis and dielectric performance of Sr-doped BaTiO3 nano-powders. J Mater Sci: Mater Electron 35, 1283 (2024). https://doi.org/10.1007/s10854-024-13074-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-13074-6

Navigation