Log in

Effect of metal source variation in cuprous oxide thin films deposited by chemical bath deposition

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, the effect of copper source in cuprous oxide thin films deposited by chemical bath deposition is presented. The replacement of copper sulfate by copper chloride, nitrate, or acetate in proportions of 25, 50, 75, and 100% were tested. When copper chloride was used, thicker films with larger particle size, fewer structural defects, and greater preferential orientation to crystallize towards the plane (200) were obtained, which resulted in electrically resistive thin films. The opposite behavior was recorded when copper acetate was used, obtaining the films with the lowest thickness and particle size, and the greatest preferential orientation to crystallize towards the plane (111) causing them to be the most electrically conductive films, while the films deposited using copper nitrate presented properties similar to those calculated with copper acetate, but with a slightly lower electrical conductivity. It is noteworthy that the mixture of metal sources with copper sulfate encourages a greater presence of structural defects, which in turn produces an increase in electrical conductivity, a condition that is seen more clearly when 25% of copper sulfate is replaced by copper acetate or nitrate. The latter is very important since it results in a simple strategy to adjust the electrical properties to the desired values in applications such as photovoltaics, photoelectrolysis, photocatalysis, and sensor design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. S. Nandy, A. Banerjee, E. Fortunato, R. Martins, A review on Cu2O and CuI-based p-type semiconducting transparent oxide materials: promising candidates for new generation oxide based electronics. Rev. Adv. Sci. Eng. 2(4), 273–304 (2013)

    Article  Google Scholar 

  2. A.E. Rakhshani, Preparation, characteristics and photovoltaic properties of cuprous oxide—a review. Solid-State Electron. 29(1), 7–17 (1986)

    Article  CAS  Google Scholar 

  3. T. Minami, Y. Nishi, T. Miyata, Heterojunction solar cell with 6% efficiency based on an n-type aluminum–gallium–oxide thin film and p-type sodium-doped Cu2O sheet. Appl. Phys. Express 8(2), 022301 (2015)

    Article  CAS  Google Scholar 

  4. R.P. Wijesundera, L.K.A.D.D.S. Gunawardhana, W. Siripala, Electrodeposited Cu2O homojunction solar cells: fabrication of a cell of high short circuit photocurrent. Sol. Energy Mater. Sol. Cells 157, 881–886 (2016)

    Article  CAS  Google Scholar 

  5. M.I. Hossain, B. Aïssa, Effect of structure, temperature, and metal work function on performance of organometallic perovskite solar cells. J. Electron. Mater. 46(3), 1806–1810 (2017)

    Article  CAS  Google Scholar 

  6. O. Reyes-Vallejo, R. Sánchez-Albores, A. Fernández-Madrigal, S. Torres-Arellano, P.J. Sebastian, Evaluation of hydrogen evolution reaction on chemical bath deposited Cu2O thin films: effect of copper source and triethanolamine content. Int. J. Hydrogen Energy 47(54), 22775–22786 (2022)

    Article  CAS  Google Scholar 

  7. A.A. Zhang, Y.L. Li, Z.B. Fang, L. **e, R. Cao, Y. Liu, T.F. Liu, Facile preparation of hydrogen-bonded organic framework/Cu2O heterostructure films via electrophoretic deposition for efficient CO2 photoreduction. ACS Appl. Mater. Interfaces 14(18), 21050–21058 (2022)

    Article  CAS  PubMed  Google Scholar 

  8. S. Sun, X. Zhang, Q. Yang, S. Liang, X. Zhang, Z. Yang, Cuprous oxide (Cu2O) crystals with tailored architectures: a comprehensive review on synthesis, fundamental properties, functional modifications and applications. Prog. Mater. Sci.. Mater Sci. 96, 111–173 (2018)

    Article  CAS  Google Scholar 

  9. W. Wang, Y. Zhang, J. Zhang, G. Li, D. Leng, Y. Gao, X. Li, Metal–organic framework-derived Cu2O–CuO octahedrons for sensitive and selective detection of ppb-level NO2 at room temperature. Sens. Actuators B: Chem. 328, 129045 (2021)

    Article  CAS  Google Scholar 

  10. M.R. Dustgeer, S.T. Asma, A. Jilani, K. Raza, S.Z. Hussain, M.B. Shakoor, R. Darwesh, Synthesis and characterization of a novel single-phase sputtered Cu2O thin films: structural, antibacterial activity and photocatalytic degradation of methylene blue. Inorg. Chem. Commun.. Chem. Commun. 128, 108606 (2021)

    Article  CAS  Google Scholar 

  11. M.J. Wozniak-Budych, Ł Przysiecka, B.M. Maciejewska, D. Wieczorek, K. Staszak, M. Jarek, S. Jurga, Facile synthesis of sulfobetaine-stabilized Cu2O nanoparticles and their biomedical potential. ACS Biomater. Sci. Eng.Biomater. Sci. Eng. 3(12), 3183–3194 (2017)

    Article  CAS  Google Scholar 

  12. S. Felix, P. Kollu, B.P. Raghupathy, KWAN JEONG, S. O. O. N., & NIRMALA GRACE, A. N. D. R. E. W. S., Electrocatalytic activity of Cu 2 O nanocubes based electrode for glucose oxidation. J. Chem. Sci. 126, 25–32 (2014)

    Article  CAS  Google Scholar 

  13. J. Deuermeier, J. Gassmann, J. Brötz, A. Klein, Reactive magnetron sputtering of Cu2O: dependence on oxygen pressure and interface formation with indium tin oxide. J. Appl. Phys. 109(11), 113704 (2011)

    Article  Google Scholar 

  14. F. Caballero-Briones, A. Palacios-Padrós, O. Calzadilla, F. Sanz, Evidence and analysis of parallel growth mechanisms in Cu2O films prepared by Cu anodization. Electrochim. Acta. Acta 55(14), 4353–4358 (2010)

    Article  CAS  Google Scholar 

  15. Y.L. Liu, Y.C. Liu, R. Mu, H. Yang, C.L. Shao, J.Y. Zhang, X.W. Fan, The structural and optical properties of Cu2O films electrodeposited on different substrates. Semicond. sci. technol. 20(1), 44 (2004)

    Article  CAS  Google Scholar 

  16. A. Eskandari, P. Sangpour, M.R. Vaezi, Hydrophilic Cu2O nanostructured thin films prepared by facile spin coating method: investigation of surface energy and roughness. Mater. Chem. Phys. 147(3), 1204–1209 (2014)

    Article  CAS  Google Scholar 

  17. M.T.S. Nair, L. Guerrero, O.L. Arenas, P.K. Nair, Chemically deposited copper oxide thin films: structural, optical and electrical characteristics. Appl. Surf. Sci. 150(1–4), 143–151 (1999)

    Article  CAS  Google Scholar 

  18. Reyes-Vallejo, O., Sánchez-Albores, R. M., Fernández-Madrigal, A., Cano, F. J., Meza-Avendano, C. A., Diaz, J. J., Sebastian, P. J. (2022). Chemical Bath Deposition of Cu2O Thin Films on FTO Substrates: Effect of Sequential Deposition. In 2022 19th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE) pp. 1–6 IEEE.

  19. O. Reyes, D. Maldonado, J. Escorcia-García, P.J. Sebastian, Effect of temperature and pH on direct chemical bath deposition of cuprous oxide thin films. J. Mater. Sci. Mater. Electron. 29(18), 15535–15545 (2018)

    Article  CAS  Google Scholar 

  20. M. Cao, B.L. Zhang, L. Li, J. Huang, S.R. Zhao, H. Cao, Y. Shen, Effects of zinc salts on the structural and optical properties of acidic chemical bath deposited ZnS thin films. Mater. Res. Bull. 48(2), 357–361 (2013)

    Article  CAS  Google Scholar 

  21. H. Khallaf, I.O. Oladeji, G. Chai, L. Chow, Characterization of CdS thin films grown by chemical bath deposition using four different cadmium sources. Thin Solid Films 516(21), 7306–7312 (2008)

    Article  CAS  Google Scholar 

  22. T. Liu, Y. Li, H. Ke, Y. Qian, S. Duo, Y. Hong, X. Sun, Chemical bath Co-deposited ZnS film prepared from different zinc salts: ZnSO4Zn (CH3COO) 2, Zn (NO3) 2Zn (CH3COO) 2, or ZnSO4Zn (NO3) 2. J. Mater. Sci. Technol. 32(3), 207–217 (2016)

    Article  Google Scholar 

  23. A.M. Pourrahimi, D. Liu, L.K. Pallon, R.L. Andersson, A.M. Abad, J.M. Lagarón, R.T. Olsson, Water-based synthesis and cleaning methods for high purity ZnO nanoparticles–comparing acetate, chloride, sulphate and nitrate zinc salt precursors. RSC Adv. 4(67), 35568–35577 (2014)

    Article  CAS  Google Scholar 

  24. T. Terasako, K. Ohnishi, H. Okada, S. Obara, M. Yagi, Possibility of selective and morphology-controlled growth of CuO and Cu2O films. Thin Solid Films 644, 146–155 (2017)

    Article  CAS  Google Scholar 

  25. R. GaleazziIsasmendi, I.J. Gonzalez Panzo, C. Morales-Ruiz, R. Romano Trujillo, E. Rosendo, I. García, C. Tabasco Novelo, Copper oxide films deposited by microwave assisted alkaline chemical bath. Crystals 11(8), 968 (2021)

    Article  CAS  Google Scholar 

  26. I. Grozdanov, Electroless chemical deposition technique for Cu2O thin films. Mater. Lett.Lett. 19(5–6), 281–285 (1994)

    Article  CAS  Google Scholar 

  27. H.Y. Xu, C. Chen, L. Xu, J.K. Dong, Direct growth and shape control of Cu2O film via one-step chemical bath deposition. Thin Solid Films 527, 76–80 (2013)

    Article  CAS  Google Scholar 

  28. Reyes-Vallejo, O., Sánchez-Albores, R. M., Ashok, A., Fernández-Madrigal, A., Díaz, J. J., Vázquez-Vázquez, E. F., Sebastian, P. J. (2023, October). Cuprous Oxide Thin Films Deposited by Microwave-Assisted Chemical Bath Deposition. In 2023 20th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE) pp. 1–6 IEEE.

  29. Reyes-Vallejo, O., Sánchez-Albores, R. M., Ashok, A., Fernández-Madrigal, A., Díaz, J. J., Montejo-López, W., ... & Sebastian, P. J. (2023, October). Cuprous Oxide Thin Films Deposited by Chemical Bath Deposition: Effect of Temperature and TEA. In 2023 20th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE) pp. 1–6 IEEE.

  30. O. Reyes-Vallejo, J. Escorcia-García, P.J. Sebastian, Effect of complexing agent and deposition time on structural, morphological, optical and electrical properties of cuprous oxide thin films prepared by chemical bath deposition. Mater. Sci. Semicond. Process.Semicond. Process. 138, 106242 (2022)

    Article  CAS  Google Scholar 

  31. Reyes-Vallejo, O., Sánchez-Albores, R. M., Fernández-Madrigal, A., Cano, F. J., Meza-Avendano, C. A., Diaz, J. J., Sebastian, P. J. (2022, November). Chemical Bath Deposition of Cu 2 O Thin Films on FTO Substrates: Effect of Sequential Deposition. In 2022 19th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE) pp. 1–6 IEEE.

  32. J. Teichert, T. Doert, M. Ruck, Mechanisms of the polyol reduction of copper (II) salts depending on the anion type and diol chain length. Dalton Trans. 47(39), 14085–14093 (2018)

    Article  CAS  PubMed  Google Scholar 

  33. D.S. Murali, S. Kumar, R.J. Choudhary, A.D. Wadikar, M.K. Jain, A. Subrahmanyam, Synthesis of Cu2O from CuO thin films: optical and electrical properties. AIP Adv. 5(4), 047143 (2015)

    Article  Google Scholar 

  34. G. Dasbach, D. Fröhlich, H. Stolz, R. Klieber, D. Suter, M. Bayer, Anisotropic effective exciton mass in Cu2O. Phys. Status Solidi C 2(886), 889 (2005)

    Google Scholar 

  35. X.G. Yan, L. Xu, W.Q. Huang, G.F. Huang, Z.M. Yang, S.Q. Zhan, J.P. Long, Theoretical insight into the electronic and photocatalytic properties of Cu2O from a hybrid density functional theory. Mater. Sci. Semicond. Process.Semicond. Process. 23, 34–41 (2014)

    Article  CAS  Google Scholar 

  36. W.Y. Ching, Y.N. Xu, K.W. Wong, Ground-state and optical properties of Cu 2 O and CuO crystals. Phys. Rev. B 40(11), 7684 (1989)

    Article  CAS  Google Scholar 

  37. C.H. Kuo, Y.C. Yang, S. Gwo, M.H. Huang, Facet-dependent and Au nanocrystal-enhanced electrical and photocatalytic properties of Au− Cu2O core− shell heterostructures. J. Am. Chem. Soc. 133(4), 1052–1057 (2011)

    Article  CAS  PubMed  Google Scholar 

  38. C.S. Tan, S.C. Hsu, W.H. Ke, L.J. Chen, M.H. Huang, Facet-dependent electrical conductivity properties of Cu2O crystals. Nano Lett. Lett. 15(3), 2155–2160 (2015)

    Article  CAS  Google Scholar 

  39. N.G. Elfadill, M.R. Hashim, K.M. Chahrour, M.A. Qaeed, M. Bououdina, The influence of Cu2O crystal structure on the Cu2O/ZnO heterojunction photovoltaic performance. Superlattices Microstruct. Microstruct. 85, 908–917 (2015)

    Article  CAS  Google Scholar 

  40. Y. Su, H. Li, H. Ma, J. Robertson, A. Nathan, Controlling surface termination and facet orientation in Cu2O nanoparticles for high photocatalytic activity: a combined experimental and density functional theory study. ACS Appl. Mater. Interfaces 9(9), 8100–8106 (2017)

    Article  CAS  PubMed  Google Scholar 

  41. P.B. Ahirrao, B.R. Sankapal, R.S. Patil, Nanocrystalline p-type-cuprous oxide thin films by room temperature chemical bath deposition method. J. Alloy. Compd. 509(18), 5551–5554 (2011)

    Article  CAS  Google Scholar 

  42. E. Allahyarov, K. Sandomirski, S.U. Egelhaaf, H. Löwen, Crystallization seeds favour crystallization only during initial growth. Nat. Commun.Commun. 6(1), 7110 (2015)

    Article  CAS  Google Scholar 

  43. H. Xu, J. Dong, C. Chen, One-step chemical bath deposition and photocatalytic activity of Cu2O thin films with orientation and size controlled by a chelating agent. Mater. Chem. Phys. 143(2), 713–719 (2014)

    Article  CAS  Google Scholar 

  44. J. Dong, H. Xu, F. Zhang, C. Chen, L. Liu, G. Wu, Synergistic effect over photocatalytic active Cu2O thin films and their morphological and orientational transformation under visible light irradiation. Appl. Catal. ACatal. A 470, 294–302 (2014)

    Article  CAS  Google Scholar 

  45. M. Nolan, S.D. Elliott, The p-type conduction mechanism in Cu 2 O: a first principles study. Phys. Chem. Chem. Phys. 8(45), 5350–5358 (2006)

    Article  CAS  PubMed  Google Scholar 

  46. H. Raebiger, S. Lany, A. Zunger, Origins of the p-type nature and cation deficiency in Cu 2 O and related materials. Phys. Rev. B 76(4), 045209 (2007)

    Article  Google Scholar 

  47. A.S. Hassanien, A.A. Akl, Effect of Se addition on optical and electrical properties of chalcogenide CdSSe thin films. Superlattices Microstruct. Microstruct. 89, 153–169 (2016)

    Article  CAS  Google Scholar 

  48. R.M. Sánchez-Albores, O. Reyes-Vallejo, E. Ríos-Valdovinos, A. Fernández-Madrigal, F. Pola-Albores, C.I. Enríquez-Flores, J. Moreira-Acosta, Characterization and photoelectrochemical evaluation of BiVO4 films developed by thermal oxidation of metallic Bi films electrodeposited. Mater. Sci. Semicond Processing 153, 107184 (2023)

    Article  Google Scholar 

  49. R. Sánchez-Albores, F.J. Cano, P.J. Sebastian, O. Reyes-Vallejo, Microwave-assisted biosynthesis of ZnO-GO particles using orange peel extract for photocatalytic degradation of methylene blue. J. Environ. Chem. Eng. 10(6), 108924 (2022)

    Article  Google Scholar 

  50. W. Zhao, W. Fu, H. Yang, C. Tian, M. Li, Y. Li, G. Zou, Electrodeposition of Cu2O films and their photoelectrochemical properties. CrystEngComm 13(8), 2871–2877 (2011)

    Article  CAS  Google Scholar 

  51. L.C. Wang, N.R. De Tacconi, C.R. Chenthamarakshan, K. Rajeshwar, M. Tao, Electrodeposited copper oxide films: Effect of bath pH on grain orientation and orientation-dependent interfacial behavior. Thin Solid Films 515(5), 3090–3095 (2007)

    Article  CAS  Google Scholar 

  52. T. Shinagawa, Y. Ida, K. Mizuno, S. Watase, M. Watanabe, M. Inaba, M. Izaki, Controllable growth orientation of Ag2O and Cu2O films by electrocrystallization from aqueous solutions. Cryst. Growth design 13(1), 52–58 (2013)

    Article  CAS  Google Scholar 

  53. R.M. Liang, Y.M. Chang, P.W. Wu, P. Lin, Effect of annealing on the electrodeposited Cu2O films for photoelectrochemical hydrogen generation. Thin Solid Films 518(24), 7191–7195 (2010)

    Article  CAS  Google Scholar 

  54. L. Zhang, Q. Li, H. Xue, H. Pang, Fabrication of Cu2O-based materials for lithium-ion batteries. Chemsuschem 11(10), 1581–1599 (2018)

    Article  CAS  PubMed  Google Scholar 

  55. C. Zuo, L. Ding, Solution-processed Cu2O and CuO as hole transport materials for efficient perovskite solar cells. Small 11(41), 5528–5532 (2015)

    Article  CAS  PubMed  Google Scholar 

  56. L. Bergerot, C. Jiménez, O. Chaix-Pluchery, L. Rapenne, J.L. Deschanvres, Growth and characterization of Sr-doped Cu2O thin films deposited by metalorganic chemical vapor deposition. Physica Status Solidi (A) 212(1735), 1741 (2015)

    Google Scholar 

  57. L. Hill-Pastor, T. Díaz-Becerril, R. Romano-Trujillo, M. Galván-Arellano, R. Peña-Sierra, Study of the effects of NaCl or NaOH as sodium dopant precursors in p-type nanocrystalline Cu2O thin films. Mater. Sci. Semicond. Process.Semicond. Process. 109, 104914 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Odín Reyes-Vallejo acknowledges CONAHCYT for the postdoctoral fellowships. Thanks to Ing. Marvin Reyes Vallejo for general assistance. Thanks to Miguel Angel Luna Arias, and Miguel Angel Avendaño Ibarra from the SEES department of CINVESTAV for general assistance. The authors thank the IER-UNAM technicians MSc María Luisa Ramón García for XRD analysis, and Rogelio Morán Elvira for SEM characterization.

Funding

Odín Reyes Vallejo (CVU 487411) acknowledges CONAHCYT for the postdoctoral fellowships.

Author information

Authors and Affiliations

Authors

Contributions

Odín Reyes Vallejo: Conceptualization, investigation, experiments, methodology, characterization, writing the original draft, and corrections. Sebastian P.J. Reagents, equipment, editing, and reviewing.

Corresponding author

Correspondence to Odín Reyes-Vallejo.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reyes-Vallejo, O., Sebastian, P.J. Effect of metal source variation in cuprous oxide thin films deposited by chemical bath deposition. J Mater Sci: Mater Electron 35, 1269 (2024). https://doi.org/10.1007/s10854-024-13057-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-13057-7

Navigation