Log in

Effect of Ni do** on the microstructure and electrical properties of Ba–Co–O NTC ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

A novel perovskite BaNixCo1‒xO3‒δ (0 ≤ x ≤ 0.1) Negative Temperature Coefficient thermal ceramic material has been successfully synthesized using a solid-phase method. The XRD analysis revealed that the BaNixCo1‒xO3‒δ ceramics possess a hexagonal perovskite structure. Moderate do** with Ni ions facilitates high density in this perovskite ceramic material. The grain size exhibits a pattern of initially increasing and then decreasing with the addition of Ni2+ do**. The electrical resistivity of the perovskite ceramic material decreases and then increases with Ni2+ do**. The electrical conductivity mechanism of perovskite ceramic materials is consistent with the Mott VRH model in the temperature range below 105 K and the thermally activated conduction model in the 105–300 K temperature range. The resistivity, activation energy, and material constant B values of the ceramic material at 125 K range from 50.86–68.09 Ω·cm, 50.45–60.07 meV, and 652.79–687.02 K. A ceramic material with low B value and low resistance was developed for thermal applications, with a measurement temperature range of 10–300 K. The material shows promise for application in the specialized environmental monitoring industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. W. Luo, H.M. Yao, P.H. Yang, C.S. Chen, J. Am. Ceram. Soc. 92, 2682 (2009). https://doi.org/10.1111/j.1551-2916.2009.03289.x

    Article  CAS  Google Scholar 

  2. L. Yajie, L. Jian, L. Lanhui, Electron. Compon. Mater. 41, 771 (2022)

    Google Scholar 

  3. K. Wang, Cryogenic 129, 49 (2002). https://doi.org/10.3969/j.issn.1000-6516.2002.05.010

    Article  Google Scholar 

  4. Y. Lan, L. Yu, G. Chen, S. Yang, A. Chang, Int. J. Thermophys. 31, 1456 (2010). https://doi.org/10.1007/s10765-010-0790-0

    Article  CAS  Google Scholar 

  5. J. Yao, J. Wang, Q. Zhao, A. Chang, Int. J. Appl. Ceram. Technol. 10, E106 (2013). https://doi.org/10.1111/ijac.12054

    Article  CAS  Google Scholar 

  6. Z. Maowen, W. Lingjiao, Q. Jia, L. Peng, L. **gtao, Z. Miguang, Low Temp. Phys. Lett. 42, 211 (2020)

    Google Scholar 

  7. Y. Long, Y. Kaneko, S. Ishiwata, Y. Taguchi, Y. Tokura, J. Phys. Condens. Matter 23, 245601 (2011). https://doi.org/10.1088/0953-8984/23/24/245601

    Article  CAS  PubMed  Google Scholar 

  8. Z. Liu, Y. Bai, H. Sun, D. Guan, W. Li, W.H. Huang, C.W. Pao, Z. Hu, G. Yang, Y. Zhu, R. Ran, W. Zhou, Z. Shao, Nat. Commun. 15, 472 (2024). https://doi.org/10.1038/s41467-024-44767-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. J. Zhou, L. Zhang, Y.C. Huang, C.L. Dong, H.J. Lin, C.T. Chen, L.H. Tjeng, Z. Hu, Nat. Commun. 11, 1984 (2020). https://doi.org/10.1038/s41467-020-15925-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. N. Lu, P. Zhang, Q. Zhang, R. Qiao, Q. He, H.B. Li, Y. Wang, J. Guo, D. Zhang, Z. Duan, Z. Li, M. Wang, S. Yang, M. Yan, E. Arenholz, S. Zhou, W. Yang, L. Gu, C.W. Nan, J. Wu, Y. Tokura, P. Yu, Nature 546, 124 (2017). https://doi.org/10.1038/nature22389

    Article  CAS  PubMed  Google Scholar 

  11. Y. Takeda, J. Solid State Chem. 15, 40 (1975). https://doi.org/10.1016/0022-4596(75)90268-6

    Article  CAS  Google Scholar 

  12. Z. Hu, J. Wang, X. **e, X. Liu, J. Yao, A. Chang, J. Mater. Sci. Mater. Electron. 28, 17606 (2017). https://doi.org/10.1007/s10854-017-7698-4

    Article  CAS  Google Scholar 

  13. Y. Lan, W. Tuo, A. Chang, Electron. Compon. Mater. 25, 44 (2006). https://doi.org/10.3969/j.issn.1001-2028.2006.10.013

    Article  CAS  Google Scholar 

  14. Z. Yuwu, X. Hua, S. Yunxue, T. Wanlu, Z. Shunchang, G. Zhengxiang, C. Liezhao, Low Temp. Phys. Lett. 8, 227 (1986). https://doi.org/10.1007/b137878

    Article  Google Scholar 

  15. Z. Hu, H. Zhang, J. Wang, L. Chen, X. **e, X. Liu, J. Yao, A. Chang, J. Mater. Sci. Mater. Electron. 28, 6239 (2017). https://doi.org/10.1007/s10854-016-6304-5

    Article  CAS  Google Scholar 

  16. R. Leanza, I. Rossetti, L. Fabbrini, C. Oliva, L. Forni, Appl. Catal., B 28, 55 (2000)

    Article  CAS  Google Scholar 

  17. D. Hongxing, H. Hong, L. Peiheng, Z. Xuehong, J. Rare Earths (2003). https://doi.org/10.3321/j.issn:1000-4343.2003.z2.001

    Article  Google Scholar 

  18. A. Ihalage, Y. Hao, npj Comput. Mater. 7, 75 (2021). https://doi.org/10.1038/s41524-021-00536-2

    Article  CAS  Google Scholar 

  19. V.V. Kharton, A.P. Viskup, E.N. Naumovich, V.N. Tikhonovich, Mater. Res. Bull. 34, 1311 (1999). https://doi.org/10.1016/S0025-5408(99)00117-8

    Article  CAS  Google Scholar 

  20. L. Wang, R. Dou, Y. Li, H. Lu, M. Bai, D. Hall, Y. Chen, Mater. Sci. Eng., A 658, 280 (2016)

    Article  Google Scholar 

  21. B. Wei, Z. Lü, D. Jia, X. Huang, Y. Zhang, W. Su, Int. J. Hydrogen Energy 35, 3775 (2010). https://doi.org/10.1016/j.ijhydene.2010.01.079

    Article  CAS  Google Scholar 

  22. L. Yi, L. Hai**, Z. Qing, L. Yong, L. Houtong, Chin. Phys. B 22, 057201 (2013). https://doi.org/10.1088/1674-1056/22/5/057201

    Article  CAS  Google Scholar 

  23. S. Sivakumar, D. Anusuya, C.P. Khatiwada, J. Sivasubramanian, A. Venkatesan, P. Soundhirarajan, Spectrochim. Acta, Part A 128, 69 (2014). https://doi.org/10.1016/j.saa.2014.02.136

    Article  CAS  Google Scholar 

  24. J. Gu, L. Sun, Y. Zhang, Q. Zhang, X. Li, H. Si, Y. Shi, C. Sun, Y. Gong, Y. Zhang, Chem. Eng. J. 385, 123454 (2020). https://doi.org/10.1016/j.cej.2019.123454

    Article  CAS  Google Scholar 

  25. M. Hosseini, Ceram. Int. 26, 245 (2000). https://doi.org/10.1016/S0272-8842(99)00049-8

    Article  CAS  Google Scholar 

  26. E.M. Huseynov, Ceram. Int. 46, 5645 (2020). https://doi.org/10.1016/j.ceramint.2019.11.010

    Article  CAS  Google Scholar 

  27. N.E. Volkova, K.S. Tolstov, L.Y. Gavrilova, B. Raveau, A. Maignan, V.A. Cherepanov, J. Am. Ceram. Soc. 104, 2410 (2021). https://doi.org/10.1111/jace.17602

    Article  CAS  Google Scholar 

  28. L.Y. Gavrilova, T.V. Aksenova, N.E. Volkova, A.S. Podzorova, V.A. Cherepanov, J. Solid State Chem. 184, 2083 (2011). https://doi.org/10.1016/j.jssc.2011.06.006

    Article  CAS  Google Scholar 

  29. K. Shi, Y. Yin, Z. Tang, S. Yu, Q. Zhang, Ceram. Int. 48, 13024 (2022). https://doi.org/10.1016/j.ceramint.2022.01.176

    Article  CAS  Google Scholar 

  30. X. Li, Y. Luo, G. Chen, Ceram. Int. 45, 8145 (2019). https://doi.org/10.1016/j.ceramint.2019.01.115

    Article  CAS  Google Scholar 

  31. F. Li, J. Li, Ceram. Int. 37, 105 (2011). https://doi.org/10.1016/j.ceramint.2010.08.024

    Article  CAS  Google Scholar 

  32. S. Peng, S. Lei, S. Wen, G. Weng, K. Ouyang, Z. Yin, J. Xue, H. Wang, Int. J. Hydrogen Energy 48, 22209 (2023). https://doi.org/10.1016/j.ijhydene.2023.03.030

    Article  CAS  Google Scholar 

  33. J.A. Onrubia Calvo, B. Pereda Ayo, U. DeLa Torre, J.R. González Velasco, Appl. Catal., B 213, 198 (2017)

    Article  Google Scholar 

  34. M.C. Biesinger, B.P. Payne, A.P. Grosvenor, L.W.M. Lau, A.R. Gerson, R.S.C. Smart, Appl. Surf. Sci. 257, 2717 (2011). https://doi.org/10.1016/j.apsusc.2010.10.051

    Article  CAS  Google Scholar 

  35. Y. Li, P. Wu, S. Zhang, X. Han, S. Chen, L. Wang, J. Alloys Compd. 973, 172904 (2024). https://doi.org/10.1016/j.jallcom.2023.172904

    Article  CAS  Google Scholar 

  36. J. Zhong, Q. Chen, C. Guo, W. Peng, Y. Li, F. Zhang, X. Fan, Int. J. Hydrogen Energy 48, 23530 (2023). https://doi.org/10.1016/j.ijhydene.2023.03.088

    Article  CAS  Google Scholar 

  37. J. Sahadevan, R. Sanjay, S.E. Muthu, I. Kim, V. Vivekananthan, S. Ansar, P. Sivaprakash, Mater. Sci. Eng. B 296, 116669 (2023)

    Article  CAS  Google Scholar 

  38. J. Qu, X. Li, F. Liu, C. Yuan, X. Liu, H. Ning, H. Li, J. Mater. Sci. Mater. Electron. 30, 4688 (2019). https://doi.org/10.1007/s10854-019-00762-x

    Article  CAS  Google Scholar 

  39. T. Ishihara, S. Ishikawa, K. Hosoi, H. Nishiguchi, Y. Takita, Solid State Ionics 175, 319 (2004). https://doi.org/10.1016/j.ssi.2004.03.036

    Article  CAS  Google Scholar 

  40. D.F. Li, S.X. Zhao, K. **ong, H.Q. Bao, C.W. Nan, J. Alloys Compd. 582, 283 (2014). https://doi.org/10.1016/j.jallcom.2013.08.014

    Article  CAS  Google Scholar 

  41. J.G. Lee, H.J. Hwang, O. Kwon, O.S. Jeon, J. Jang, Y.G. Shul, Chem. Commun. 52, 10731 (2016). https://doi.org/10.1039/c6cc05704g

    Article  CAS  Google Scholar 

  42. S. Anirban, A. Dutta, Mater. Res. Bull. 86, 119 (2017). https://doi.org/10.1016/j.materresbull.2016.10.015

    Article  CAS  Google Scholar 

  43. M. Zubair Ansari, N. Khare, J. Appl. Phys. 117, 025706 (2015)

    Article  Google Scholar 

  44. Y. Zhang, Y. Hu, Y. Cai, X. Deng, Z. Guan, N. Zhong, P. **ang, C. Duan, J. Phys. D Appl. Phys. (2021). https://doi.org/10.1088/1361-6463/ac0b73

    Article  Google Scholar 

  45. N. Mott, Pure Appl. Chem. VI 52, 65 (1980). https://doi.org/10.1063/1.2994815

    Article  CAS  Google Scholar 

  46. D. Finlayson, P. Mason, I. Mohammad, J. Phys. C Solid State Phys. 20, L607 (1987). https://doi.org/10.1088/0022-3719/20/25/003

    Article  CAS  Google Scholar 

  47. G. Paasch, T. Lindner, S. Scheinert, Synth. Met. 132, 97 (2002). https://doi.org/10.1016/S0379-6779(02)00236-9

    Article  CAS  Google Scholar 

  48. B. Mandal, R. Roy, P. Mitra, J. Alloys Compd. 879, 160432 (2021). https://doi.org/10.1016/j.jallcom.2021.160432

    Article  CAS  Google Scholar 

  49. V. Pardo, P. Blaha, R. Laskowski, D. Baldomir, J. Castro, K. Schwarz, J.E. Arias, Phys. Rev. B 76, 165120 (2007). https://doi.org/10.1103/PhysRevB.76.165120

    Article  CAS  Google Scholar 

  50. C. Felser, K. Yamaura, R. Cava, J. Solid State Chem. 146, 411 (1999). https://doi.org/10.1006/jssc.1999.8382

    Article  CAS  Google Scholar 

  51. B.S. Kumar, Y.N. Kumar, V. Kamalarasan, C. Venkateswaran, J. Mater. Sci. Mater. Electron. 31, 22312 (2020). https://doi.org/10.1007/s10854-020-04732-6

    Article  CAS  Google Scholar 

  52. F. Denbri, N. Mahamdioua, F. Meriche, S.P. Altintas, C. Terzioglu, J. Mater. Sci. Mater. Electron. 32, 18808 (2021). https://doi.org/10.1007/s10854-021-06398-0

    Article  CAS  Google Scholar 

  53. E.A. Davis, N.F. Mott, Philos. Mag. 22, 0903 (1970). https://doi.org/10.1080/14786437008221061

    Article  CAS  Google Scholar 

  54. R. Belguet, N. Mahamdioua, F. Meriche, J.A. Alonso, J.L. Martinez, F. Denbri, S. Polat-Altintas, C. Terzioglu, J. Mater. Sci. Mater. Electron. (2023). https://doi.org/10.1007/s10854-023-10452-4

    Article  Google Scholar 

  55. R. Roy, A. Dutta, J. Alloys Compd. 843, 155999 (2020). https://doi.org/10.1016/j.jallcom.2020.155999

    Article  CAS  Google Scholar 

  56. M. Essaleh, S. Amhil, R. Bouferra, M. Mansori, S. Belhouideg, Phys. B Condens. Matter 637, 413902 (2022). https://doi.org/10.1016/j.physb.2022.413902

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Western Light Program of the Chinese Academy of Sciences (Grant numbers: 2021-XBQNXZ-019) and the Science and Technology Development Project of Two zones **njiang (Grant No. 2022LQ03006).

Author information

Authors and Affiliations

Authors

Contributions

WH: Conceptualization (equal); Data curation (lead); Formal analysis (lead); Methodology analysis (lead); Investigation(equal); Visualization (equal); Writing-original draft (lead). SF: Data curation (supporting); Methodology (supporting). YL: Conceptualization (supporting); Formal analysis (supporting); Investigation (supporting). YT: Formal analysis (supporting); Methodology (supporting). PZ: Formal analysis (supporting); Investigation (supporting); Methodology (supporting). YL: Formal analysis (equal); Methodology (supporting); Software (supporting); Visualization (lead). XH: Conceptualization (lead); Data curation (supporting); Formal analysis (equal); Funding acquisition (lead); Investigation (equal); Supervision (lead); Writing-review and editing(equal). AC: Project administration (equal); Resources (supporting); Validation (equal).

Corresponding authors

Correspondence to **a Huang or Aimin Chang.

Ethics declarations

Competing interests

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.

Informed consent

This article has nothing to do with medicine. No informed notice is required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Feng, S., Li, Y. et al. Effect of Ni do** on the microstructure and electrical properties of Ba–Co–O NTC ceramics. J Mater Sci: Mater Electron 35, 1294 (2024). https://doi.org/10.1007/s10854-024-13044-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-13044-y

Navigation