Log in

High-performance SO2 gas sensor based on MXene/LaFeO3 nanotubes by electrospinning technology

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Sulfur dioxide (SO2) is highly toxic, harmful to human health, and seriously pollutes the environment. In the present report, different ratios of MXene (Ti3C2Tx) loaded LaFeO3 nanotubes were obtained through etching and electrospinning techniques. The MXene/LaFeO3 composites were characterized by X-ray diffraction, scanning electron microscope, transmission electron microscope, X-ray photoelectron spectroscopy. The characterization results show that there is a good connection between MXene and LaFeO3. The gas sensitivity test shows that the 4 wt%-MXene/LaFeO3 nanocomposite material shows higher sensitivity, rapid response and recovery rate, excellent selectivity to SO2. The MXene/LaFeO3 sensor demonstrates excellent linear response within the concentration range of 1–50 ppm, enabling precise detection of SO2. When the SO2 concentration is 20 ppm, the MXene/LaFeO3 sensor’s response/recovery time is 92 s and 54 s respectively. This work confirms the advantages of MXene-loaded catalyst in SO2 gas detection. MXene/LaFeO3 nanocomposite is a promising candidate material for rapid detection of SO2. This study provides insights into MXene-based gas sensing materials, laying the theoretical foundation for the development and application of high-performance SO2 sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Data availability

Data will be made available on request.

References

  1. Y.X. Zhai, J.Y. Ye, Y.B. Zhang, K.Z. Zhang, E. Zhan, X.D. Zhang, Y.Q. Yang, Excellent sensing platforms for identification of gaseous pollutants based on metal–organic frameworks: a review. Chem. Eng. J. 484, 149286 (2024)

    Article  CAS  Google Scholar 

  2. X. Jia, P.Z. Qiao, X.W. Wang, M.Y. Yan, Y. Chen, B.L. An, P.F. Hu, B. Lu, J. Xu, Z.G. Xue, J.Q. Xu, Building feedback-regulation system through atomic design for highly active SO2 sensing. Nano-Micro Lett. 16, 136 (2024)

    Article  CAS  Google Scholar 

  3. Y. Lu, X.F. Mo, G. Zhu, Y. Huang, Y.H. Wang, Z.Z. Yang, L.Q. Gao, G.F. Shen, Y. Wang, X.W. Zhao, Ratiometric SERS quantification of SO2 vapor based on Au@Ag-Au with Raman reporter as internal standard. J. Haz Mat. 165, 107747 (2020)

    Google Scholar 

  4. W. Lan, Y.M. Rao, X.Y. Zhao, Y. Zhao, X.Y. Min, Y. Wu, Z.Y. Jiang, T. Li, Y.H. Li, H.Y. Chen, W.J. Long, Y.B. She, H.Y. Fu, Rapid visual detection of sulfur dioxide residues in food using acid-sensitive CdTe quantum dots-loaded alginate hydrogel beads. Food Chem. 446, 138791 (2024)

    Article  CAS  PubMed  Google Scholar 

  5. D. Yilmaz, B. Miranda., E. Lonardo, I. Rea, L.D. Stefano, A.C.D. Luca, SERS-based pH-Dependent detection of sulfites in wine by hydrogel nanocomposites. Biosens. Bioelectron. 245, 115836 (2024)

    Article  CAS  PubMed  Google Scholar 

  6. L. Cao, L.M. Yu, S.L. Li, N. Nan, C.T. Zhang, X.H. Fan, In-situ growth of well-ordered ZnO nanowire-networks with interconnected junctions for enhanced SO2 gas sensing properties. Appl. Surf. Sci. 646, 158899 (2024)

    Article  CAS  Google Scholar 

  7. C.G. Zhao, H.M. Gong, G.Q. Niu, F. Wang, Ultrasensitive SO2 sensor for sub-ppm detection using Cu-doped SnO2 nanosheet arrays directly grown on chip. Sens. Actuators B Chem. 324, 128745 (2020)

    Article  CAS  Google Scholar 

  8. M.A.H. Khan, B. Thomson, J. Yu, R. Debnath, A. Motayed, M.V. Rao, Scalable metal oxide functionalized GaN nanowire for precise SO2 detection. Sens. Actuators B Chem. 318, 12822 (2020)

    Article  Google Scholar 

  9. L.B. Tan, Q.M. Yang, L.P. Peng, C. **e, K. Luo, L.Y. Zhou, Molecular engineering-based a dual-responsive fluorescent sensor for sulfur dioxide and nitric oxide detecting in acid rain and its imaging studies in biosystems. J. Haz Mat. 435, 128947 (2022)

    Article  CAS  Google Scholar 

  10. H.Y. Su, H.M. Yang, C.F. Ma, J.H. Tang, C.Q. Zhu, X.X. Wang, D.W. Zeng, High response and selectivity of the SnO2 nanobox gas sensor for ethyl methyl carbonate leakage detection in a lithium-ion battery. ACS Sens. 9, 444–454 (2024)

    Article  CAS  PubMed  Google Scholar 

  11. X.X. He, H.F. Chai, Y.W. Zhou, K.W. Liu, Z.X. Yu, C. Zhang, Sensing properties and mechanisms of LaF3-Co3O4 nanorods for low-concentration methanol detection. Rare Met. 43, 2193–2204 (2024)

    Article  CAS  Google Scholar 

  12. J.Y. Hu, X.P. Wang, H. Lei, M.H. Luo, Y. Zhang Ebrahimzade, Plasmonic photothermal driven MXene-based gas sensor for highly sensitive NO2 detection at room temperature. Sens. Actuators B Chem. 407, 135422 (2024)

    Article  CAS  Google Scholar 

  13. J. Ahn, Y. Jeong, M. Kang, J. Ahn, S.P. Sasikala, I. Yang, J.H. Ha, S.H. Hwang, S. Jeon, J.M. Gu, J. Choi, B.H. Kang, S.O. Kim, S. Kim, J. Choi, J.H. Jeong, I. Park, Nanoribbon yarn with versatile inorganic materials. Small. 248, 998–1005 (2017)

    Google Scholar 

  14. L.X. Ou, M.Y. Liu, L.Y. Zhu, D.W. Zhang, H.L. Lu, Recent progress on flexible room-temperature gas sensors based on metal oxide semiconductor. Nano-Micro Lett. 14, 206 (2022)

    Article  CAS  Google Scholar 

  15. S.B. Madake, A.R. Patil, R.S. Pedanekar, N.A. Narewadikar, J.B. Thorat, K.Y. Rajpure, A review on advances in the gas-sensitive properties of perovskite materials. J. Electron. Mater. 33, 6273–6282 (2022)

    Article  CAS  Google Scholar 

  16. X. Shao, Y. Shi, H.Y. Wang, X.F. Sun, L. Yang, X. Li, M.H. Wang, Synthesis of novel RuO2/LaFeO3 porous microspheres its gas sensing performances towards triethylamine. J. Alloys Compd. 52, 5795–5809 (2023)

    CAS  Google Scholar 

  17. M. Souri, H.S. Amoli, Y. Yamini, Three-dimensionally ordered porous In-doped SmFeO3 perovskite gas sensor for highly sensitive and selective detection of formaldehyde. Sens. Actuators B Chem. 404, 135213 (2024)

    Article  CAS  Google Scholar 

  18. G. Tian, Z.W. Li, C.X. Zhang, X.Y. Liu, X.Y. Fan, K. Shen, H.B. Meng, N. Wang, H. **ong, M.Y. Zhao, X.Y. Liang, L.Q. Luo, L. Zhang, B.H. Yan, X. Chen, H.J. Peng, F. Wei, Upgrading CO2 to sustainable aromatics via perovskite-mediated tandem catalysis. Nat. Commun. 15, 3037 (2024)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. K. Yang, J.Z. Ma, X.K. Qiao, Y.W. Cui, L.C. Jia, H.Q. Wang, Hierarchical porous LaFeO3 nanostructure for efficient trace detection of formaldehyde. Sens. Actuators B Chem. 313, 128022 (2020)

    Article  CAS  Google Scholar 

  20. A.A. Alharbi, A. Sackmann, U. Weimar, N. Bârsan, A highly selective sensor to acetylene and ethylene based on LaFeO3. Sens. Actuators B Chem. 303, 127204 (2020)

    Article  CAS  Google Scholar 

  21. C. Aranthady, T. Jangid, K. Gupta, A.K. Mishra, S.D. Kaushik, V. Siruguri, G.M. Rao, G.V. Shanbhag, N.G. Sundaram, Selective SO2 detection at low concentration by ca substituted LaFeO3 chemiresistive gas sensor: a comparative study of LaFeO3 pellet vs thin film. Sens. Actuators B Chem. 329, 129211 (2021)

    Article  CAS  Google Scholar 

  22. D. Xu, F. Sun, H. Shao, F. Liu, Q.L. Ma, W.S. Yu, F. Li, X.T. Dong, Bi2MoO6 nanosheets assembled on LaFeO3 nanofibers with n-p type hierarchical nanostructure for enhanced HCHO sensor. Sens. Actuators B Chem. 406, 135430 (2024)

    Article  CAS  Google Scholar 

  23. Z.Y. Yuan, N.H. Chu, F.L. Meng, Improvement in the performance of In2O3 ethanol sensor by perovskite-type LaFeO3 modification and sensitivity mechanism analysis. Sens. Actuators B Chem. 406, 135415 (2024)

    Article  CAS  Google Scholar 

  24. A. Sukee, A.A. Alharbi, A. Staerz, A. Wisitsoraat, C. Liewhiran, U. Weimar, N. Barsan, Effect of AgO loading on flame-made LaFeO3 p-type semiconductor nanoparticles to acetylene sensing. Sens. Actuators B Chem. 312, 127990 (2020)

    Article  CAS  Google Scholar 

  25. H. Zhang, D. Zhang, B. Zhang, D.Y. Wang, M.C. Tang, Wearable pressure sensor array with layer-by-layer assembled MXene nanosheets/Ag nanoflowers for motion monitoring and human-machine interfaces. ACS Appl. Mater. 14, 48907–48916 (2022)

    Article  CAS  Google Scholar 

  26. D.Y. Wang, D. Zhang, Y. Yang, Q. Mi, J.H. Zhang, L.D. Yu, Multifunctional latex/polytetrafluoroethylene-based triboelectric nanogenerator for self-powered organ-like MXene/metal-organic framework-derived CuO nanohybrid ammonia sensor. ACS Nano. 15, 2911–2919 (2021)

    Article  CAS  PubMed  Google Scholar 

  27. H. Zhang, D. Zhang, Z.H. Wang, G.S. **, R.Y. Mao, Y.H. Ma, D.Y. Wang, M.C. Tang, Z.Y. Xu, H.X. Luan, Ultrastretchable, self-healing conductive hydrogel-based triboelectric nanogenerators for human-computer interaction. ACS Appl. Mater. 15, 5128–5138 (2023)

    Article  CAS  Google Scholar 

  28. M. Hilal, W. Yang, Y. Hwang, W.F. **e, Tailoring MXene thickness and functionalization for enhanced room-temperature trace NO2 sensing. Nano-Micro Lett. 16, 84 (2024)

    Article  CAS  Google Scholar 

  29. D.Z. Zhang, Q. Mi, D.Y. Wang, T.T. Li, MXene/Co3O4 composite based formaldehyde sensor driven by ZnO/MXene nanowire arrays piezoelectric nanogenerator. Sens. Actuators B Chem. 339, 129923 (2021)

    Article  CAS  Google Scholar 

  30. M. Liu, J. Ji, P. Song, J.X. Wang, Q. Wang, Sensing performance of alpha-Fe2O3/Ti3C2Tx MXene nanocomposites to NH3 at room temperature. J. Alloys Compd. 898, 162812 (2022)

    Article  CAS  Google Scholar 

  31. L. **, C.L. Wu, K. Wei, L.F. He, H. Gao, H.X. Zhang, K. Zhang, A.M. Asiri, K. A. Alamry, L. Yang, X.F. Chu, Polymeric Ti3C2Tx MXene composites for room temperature ammonia sensing. ACS Appl. Nano Mater. 3, 12071–12079 (2020)

  32. M.S.B. Reddy, S. Aich, Recent progress in surface and heterointerface engineering of 2D MXenes for gas sensing applications. Coord. Chem. Rev. 500, 215542 (2024)

    Article  Google Scholar 

  33. S. Aftab, M.Z. Iqbal, S. Hussain, H.H. Hegazy, F. Kabir, S.H.A. Jaffery, G. Koyyada, New developments in gas sensing using various two-dimensional architectural designs. Chem. Eng. J. 469, 144039 (2023)

    Article  CAS  Google Scholar 

  34. D.Y. Wang, D. Zhang, X.Y. Chen, H. Zhang, M.C. Tang, J.H. Wang, Multifunctional respiration-driven triboelectric nanogenerator for self-powered detection of formaldehyde in exhaled gas and respiratory behavior. Nano Energy. 102, 107711 (2022)

    Article  CAS  Google Scholar 

  35. D.Y. Wang, D. Zhang, M.C. Tang, H. Zhang, T.H. Sun, C.Q. Yang, R.Y. Mao, K.S. Li, J.H. Wang, Ethylene chlorotrifluoroethylene/hydrogel-based liquid-solid triboelectric nanogenerator driven self-powered MXene-based sensor system for marine environmental monitoring. Nano Energy. 100, 107509 (2022)

    Article  CAS  Google Scholar 

  36. G.H. Zhang, Q. Chen, X.Y. Deng, H.Y. Jiao, P.Y. Wang, D.J. Gengzang, Synthesis and characterization of In-doped LaFeO3 hollow nanofibers with enhanced formaldehyde sensing properties. Mater. Lett. 236, 229–232 (2019)

    Article  CAS  Google Scholar 

  37. P. Hao, G. Qiu, P. Song, Z.g. Yang, Q. Wang, Construction of porous LaFeO3 microspheres decorated with NiO nanosheets for high response ethanol gas sensors. Appl. Surf. Sci. 515, 146025 (2020)

  38. S.B. Sun, M.W. Wang, X.T. Chang, Y.C. Jiang, D.Z. Zhang, D.S. Wang, Y.L. Zhang, Y.H. Lei, W18O49/Ti3C2Tx Mxene nanocomposites for highly sensitive acetone gas sensor with low detection limit. Sens. Actuators B Chem. 304, 127274 (2020)

    Article  CAS  Google Scholar 

  39. X.Z. Guo, Y.Q. Ding, D.L. Kuang, Z.L. Wu, X. Sun, B.S. Dua, C.Y. Liang, Y.J. Wu, W.J. Qu, L. **ong, Y. He, Enhanced ammonia sensing performance based on MXene-Ti3C2Tx multilayer nanoflakes functionalized by tungsten trioxide nanoparticles. J. Colloid Interface Sci. 595, 6–14 (2021)

    Article  CAS  PubMed  Google Scholar 

  40. D.Y. Wang, D.Z. Zhang, M.C. Tang, H. Zhang, F.J. Chen, T. Wang, Z. Li, P.P. Zhao, Rotating triboelectric-electromagnetic nanogenerator driven by tires for self-powered MXene-based flexible wearable electronics. Chem. Eng. J. 446, 136914 (2022)

    Article  CAS  Google Scholar 

  41. N. Sharma, H.S. Kushwaha, S.K. Sharma, K. Sachdev, Fabrication of LaFeO3 and rGO-LaFeO3 microspheres based gas sensors for detection of NO2 and CO. RSC Adv. 10, 1297–1308 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. K.X. Wang, H.L. Niu, J.S. Chen, J.M. Song, C.J. Mao, S.Y. Zhang, S.J. Zheng, B.Z. Liu, C.L. Chen, Facile synthesis of CeO2-LaFeO3 perovskite composite and its application for 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) degradation. Materials. 9, 326 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  43. E.S. Cao, Y.Q. Yang, T.T. Cui, Y.J. Zhang, W.T. Hao, L. Sun, H. Peng, X. Deng, Effect of synthesis route on electrical and ethanol sensing characteristics for LaFeO3 nanoparticles by citric sol-gel method. Appl. Surf. Sci. 393, 134–143 (2017)

    Article  CAS  Google Scholar 

  44. E.S. Cao, H.H. Wang, X.F. Wang, Y.Q. Yang, W.T. Hao, L. Sun, Y.J. Zhang, Enhanced ethanol sensing performance for chlorine doped nanocrystalline LaFeO3 powders by citric sol-gel method. Sens. Actuators B Chem. 251, 885–893 (2017)

    Article  CAS  Google Scholar 

  45. H.H. Wang, Z.Q. Guo, W.T. Hao, L. Sun, Y.J. Zhang, E.S. Cao, Ethanol sensing characteristics of BaTiO3/LaFeO3 nanocomposite. Mater. Lett. 234, 40–44 (2019)

    Article  CAS  Google Scholar 

  46. Y.H. Wang, Y. Zhou, Y.J. Wang, Humidity activated ionic-conduction formaldehyde sensing of reduced graphene oxide decorated nitrogen-doped MXene/titanium dioxide composite film. Sens. Actuators B Chem. 323, 128695 (2020)

    Article  CAS  Google Scholar 

  47. Z.Y. Zhu, C.C. Liu, F.X. Jiang, J. Liu, X.M. Ma, P. Liu, J.K. Xu, L. Wang, R. Huange, Flexible and lightweight Ti3C2Tx MXene@Pd colloidal nanoclusters paper film as novel H2 sensor. J. Hazard. Mater. 399, 123054 (2020)

    Article  CAS  PubMed  Google Scholar 

  48. C.L. **ao, Z.H. Tang, Z.Z. Ma, X.T. Gao, H.Q. Wang, L.C. Jia, High performance porous LaFeO3 gas sensor with embedded p-n junctions enabling ppb-level formaldehyde detection. Sens. Actuators B Chem. 397, 134670 (2023)

    Article  CAS  Google Scholar 

  49. X. Tian, L.J. Yao, X.X. Cui, R.J. Zhao, T. Chen, X.C. **ao, Y.D. Wang, A two-dimensional Ti3C2TX MXene@TiO2/MoS2 heterostructure with excellent selectivity for the room temperature detection of ammonia. J. Mater. Chem. A 10, 5505–5519 (2022)

    Article  CAS  Google Scholar 

  50. Z.C. **a, C. Zheng, J.J. Hu, Q.M. Yuan, C. Zhang, J. Zhang, L.F. He, H.L. Gao, L. **, X.F. Chu, F.L. Meng, Synthesis of SnO2 quantum dot sensitized LaFeO3 for conductometric formic acid gas sensors. Sens. Actuators B Chem. 379, 133198 (2023)

    Article  CAS  Google Scholar 

  51. S. Zou, J. Gao, L.M. Liu, Z.D. Lin, P. Fu, S.G. Wang, Z. Chen, Enhanced gas sensing properties at low working temperature of iron molybdate/MXene composite. J. Alloys Compd. 817, 152785 (2020)

    Article  CAS  Google Scholar 

  52. Z.J. Yang, A. Liu, C.L. Wang, F.M. Liu, J.M. He, S.Q. Li, J. Wang, R. You, X. Yan, P. Sun, Y. Duan, G.Y. Lu, Improvement of gas and humidity sensing properties of organ-like MXene by alkaline treatment. ACS Sens. 4, 1261–1269 (2019)

    Article  CAS  PubMed  Google Scholar 

  53. X. Chen, X. Tong, J.B. Gao, L.J. Yang, J.N. Ren, W.J. Yang, S. Liu, M. Qi, J. Crittenden, R.L. Hao, Simultaneous nitrite resourcing and mercury ion removal using MXene-anchored goethite heterogeneous fenton composite. Environ. Sci. Technol. 56, 4542–4552 (2022)

    Article  CAS  PubMed  Google Scholar 

  54. Z.J. Yang, S.Y. Lv, Y.Y. Zhang, J. Wang, L. Jiang, X.T. Jia, C.G. Wang, X. Yan, P. Sun, Y. Duan, F.M. Liu, G.Y. Lu, Self-assembly 3D porous crumpled MXene spheres as efficient gas and pressure sensing material for transient all-MXene sensors. Nano-Micro Lett. 14, 2311–6706 (2022)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51777215), the Special Foundation of the Taishan Scholar Project (tsqn202211077), the Shandong Provincial Natural Science Foundation (ZR2023ME118), and the Natural Science Foundation of Qingdao City (23-2-1-219-zyyd-jch).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the conception, study and design for the research. All authors have checked and provided approval for the final draft.

L.Z.: Experiment, analysis and write manuscript. C.N. and Y.H.: Data curation and write manuscript. H.Z. and X.S.: Investigation. Z.D.: Review. D.Z.: Methodology and supervision.

Corresponding author

Correspondence to Dongzhi Zhang.

Ethics declarations

Competing interest

The authors declare no competing financial interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, L., Niu, C., Hu, Y. et al. High-performance SO2 gas sensor based on MXene/LaFeO3 nanotubes by electrospinning technology. J Mater Sci: Mater Electron 35, 1309 (2024). https://doi.org/10.1007/s10854-024-13030-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-13030-4

Navigation