Log in

Composition design, microstructure and mechanical properties of bismuth-doped In–Sn-based low-temperature solder alloy

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In-48Sn eutectic solder is an ideal candidate for flexible electronics equipment packaging because of its low melting point (118 °C) and low electrical resistivity (0.14 × 10–6 Ω·m), but its low tensile strength and solder joint shear strength give some cause for concern. In this paper, the microstructure, thermal physical and mechanical properties of Bismuth-doped In–Sn-based low temperature solder alloy were simulated by using JMatPro software, and the optimized alloy composition was In-45.6Sn-5Bi. The experimental results show that ‘In–Sn–Bi ternary eutectic reaction in In-45.6Sn–5Bi alloy leads to the formation of a certain amount of BiIn intermetallic compounds (IMCs) which significantly refines the grains of β and γ phases, thus improving the mechanical properties of the alloy. Through the synergistic effect of second phase strengthening and fine grain strengthening, the tensile strength of the alloy is improved to 23.1 MPa, Vickers hardness is improved to 6.2 HV0.2, and the shear strength of solder joint is improved to 5.8 MPa. Compared with the traditional experimental “trial and error” material development model, this paper provides a more efficient, low-cost and high-precision low-temperature solder development method, which provides a theoretical and experimental basis for develo** high-strength low-temperature solder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Code availability

Not applicable.

References

  1. L. Yang, H. Wu, Y. Zhang, K. Lu, Q. Lin, Weld. World (2023). https://doi.org/10.1007/s40194-023-01621-4

    Article  Google Scholar 

  2. J. Zhou, X.F. Tan, Q. Gu, S.D. McDonald, K. Nogita, Jom. (2023). https://doi.org/10.1007/s11837-023-05870-y

    Article  PubMed  PubMed Central  Google Scholar 

  3. F.L. Chang, Y.H. Lin, H.T. Hung, C.W. Kao, C.R. Kao, Materials (Basel) (2023). https://doi.org/10.3390/ma16093290

    Article  PubMed  PubMed Central  Google Scholar 

  4. G.F. Ma, H.F. Zhang, H. Li, Z.Q. Hu, Appl. Phys. Lett. (2007). https://doi.org/10.1063/1.2804559

    Article  Google Scholar 

  5. C. Zeng, J. Shen, J. Zhang, Diamond Relat. Mat. (2021). https://doi.org/10.1016/j.diamond.2020.108230

    Article  Google Scholar 

  6. K. Liu, J. Li, J. Zhang, Y. **ao, J. Mater. Sci.-Mater. Electron. (2022). https://doi.org/10.1007/s10854-022-08209-6

    Article  Google Scholar 

  7. M.C. Deshpande, R. Chaudhari, R. Narayanan, H. Kale, Solder. Surf. Mt. Technol. (2022). https://doi.org/10.1108/SSMT-10-2021-0065

    Article  Google Scholar 

  8. X. Luo, J. Peng, W. Zhang, S. Wang, S. Cai, X. Wang, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. (2022). https://doi.org/10.1016/j.msea.2022.144284

    Article  Google Scholar 

  9. X. Kong, J. Zhai, R. Ma, F. Sun, X. Li, Crystals (2024). https://doi.org/10.3390/cryst14030269

    Article  Google Scholar 

  10. Y. Gao, X. Bian, X. Qiu, Y. Jia, J. Yi, G. Wang, Materials (Basel) (2023). https://doi.org/10.3390/ma16114059

    Article  PubMed  PubMed Central  Google Scholar 

  11. Y.A. Shen, Mater. Chem. Phys. (2024). https://doi.org/10.1016/j.matchemphys.2024.128992

    Article  Google Scholar 

  12. W. Liu, R. An, Y. Ding, C.Q. Wang, Y.H. Tian, K. Shen, Rare Met. (2022). https://doi.org/10.1007/s12598-015-0545-y

    Article  Google Scholar 

  13. D.L. Han, Y.A. Shen, S. **, H. Nishikawa, J. Mater. Sci. (2020). https://doi.org/10.1007/s10853-020-04691-7

    Article  Google Scholar 

  14. D.L. Han, Y.A. Shen, S.L. He, H. Mater, Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. (2021). https://doi.org/10.1016/j.msea.2021.140785

    Article  Google Scholar 

  15. S.H. Kim, S.M. Yeon, J.H. Kim, S.J. Park, J.E. Lee, S.H. Park, J.P. Choi, C. Aranas, Y. Son, A.C.S. Appl, Mater. Interfaces. (2019). https://doi.org/10.1021/acsami.9b04159

    Article  Google Scholar 

  16. S.R. Mang, H. Choi, H.J. Lee, J. Korean Phys. Soc. (2023). https://doi.org/10.1007/s40042-023-00788-9

    Article  Google Scholar 

  17. W. Li, M.N. Li, H.Y. Bu, Sn-Bi-In alloy solder and foundation of phase diagram calculation. Chin. J. Rare Metals. 44(2), 195–204 (2020). https://doi.org/10.13373/j.cnki.cjrm.XY18110031

    Article  Google Scholar 

  18. Y.Z. Peng, C.J. Li, J.J. Yang, J.T. Zhang, J.B. Peng, G.J. Zhou, C.J. Pu, J.H. Yi, Metals. (2021). https://doi.org/10.3390/met11040538

    Article  Google Scholar 

  19. S.H. Kim, M.S. Park, J.P. Choi, C. Jr Aranas, Sci. Rep. (2017). https://doi.org/10.1038/s41598-017-14263-6

    Article  PubMed  PubMed Central  Google Scholar 

  20. V.T. Witusiewicz, U. Hecht, B. Bottger, S. Rex, J. Alloy. Compd. (2007). https://doi.org/10.1016/j.jallcom.2006.03.05

    Article  Google Scholar 

  21. J. Wang, D. Mao, L. Shi, W. Zhang, X. Zhang, J. Electron. Mater. (2018). https://doi.org/10.1007/s11664-018-6768-6

    Article  Google Scholar 

  22. D.L. Han, Y.A. Shen, F. Huo, H. Nishikawa, Metals (2022). https://doi.org/10.3390/met12010033

    Article  Google Scholar 

Download references

Funding

This work was supported by National Key R&D Program of China (No. 2017YFB0310300), and National Natural Science Foundation of China and the China Academy of Engineering Physics (NSAF) (No. U1630137).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Lingmin Ye: Conceptualization, Investigation, Formal analysis, Data curation, Writing-original draft. **aodong Li: Conceptualization, Resources, Writing-review & editing, Funding acquisition, Supervision. Mu Zhang: Writing-review, Editing. Qi Zhu: Formal analysis. Xudong Sun: Methodology, Supervision.

Corresponding author

Correspondence to **aodong Li.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest and have no known competing financial interest or personal relationships that could have appeared to influence the work reported in this paper. Manuscript is approved by all authors listed for publication.

Ethical approval

The authors followed the ethical standards during the experiments as well as for the preparation of the manuscript, and manuscript is approved by all the authors listed for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, L., Li, X., Zhang, M. et al. Composition design, microstructure and mechanical properties of bismuth-doped In–Sn-based low-temperature solder alloy. J Mater Sci: Mater Electron 35, 1303 (2024). https://doi.org/10.1007/s10854-024-13000-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-13000-w

Navigation