Log in

Synthesis, microstructural, rietveld refinement and optical characterizations of sol–gel grown cerium oxide ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The cerium oxide (CeO2) ceramics have been synthesized in the current study by employing the sol–gel technique. Synthesized CeO2 ceramics were eyed for their crystal structure and phase purity using X-ray diffraction (XRD). The crystallographic space group (SG) of synthesized CeO2 ceramic is \(fm\overline{3 }m (225)\), with a single-phase cubic structure. The CeO2 ceramic’s stacking fault morals for the most intense peaks have been calculated (\(8.5325\times {10}^{-4}\)). A value of unity was obtained for the favored orientation of the crystallites along a crystal plane (hkl) by measuring the texture coefficient (Ci) of each XRD peak of the CeO2 ceramic. Based on the calculations, the CeO2 ceramic has a degree of preferred orientation (σ) of 0.1566. The lattice constant for CeO2 ceramics is 0.5375 nm, which yields a cell volume of 0.1585 nm3 using Miller indices for the prime (1 1 1) plane. Bravais’s theory calculates the distance between crystal planes (dhkl) to understand material growth and infers the significance of CeO2’s (1 1 1) plane. Fullprof suite Rietveld refines XRD data. Numerous methods such as Nelson–Riley (N–R), Scherrer, Stokes–Wilson (S–W), Monshi, Williamson–Smallman (W–S), Williamson–Hall (W–H), size-strain plot (SSP) and Halder–Wagner (H–W) methods have determined CeO2 ceramic’s microstructural parameters such as lattice constant (a), the crystallite size (D), strain (\(\varepsilon\)), dislocation density (δ), stress (σ), Young’s modulus (Y), and energy density (u). Elemental map** analysis was used to determine the elemental distribution of synthesized CeO2 ceramics. Pycnometers confirmed CeO2’s density (7.2089 gm-cm−3). Fourier transform infrared (FTIR) spectroscopy found an intense band near 1020 cm−1, indicating C=C stretching mode and double bonds in CeO2 ceramics. The UV–VIS–NIR spectrometer recorded CeO2 ceramics’ reflectance spectra at room temperature. The absorption spectra display a pair of clearly visible peaks at 242 and 374 nm. The optical spectra of CeO2 ceramics reveal extinction coefficient (k) and refractive index (η) of \(0.2016\times {10}^{-4}\) and 2.40 at characteristic wavelength (λc = 374 nm). Tauc and Kubelka–Munk’s methods determined CeO2 ceramic’s optical bandgap (Eg = 3.32 eV). Near λc, the imaginary (\({\varepsilon }_{i}\)) and real (\({\varepsilon }_{r}\)) dielectric constants are \(9.5457\times {10}^{-4}\) and 5.7549, respectively, and the dissipation factor (tan δ) value is 1.6569 × 10–4. Optical (σo) and electrical (\({\sigma }_{e}\)) conductivity maxima and minima for CeO2 ceramics occur at 3.34 eV. The values of Urbach’s energy (EU) and Urbach absorption coefficient (\({\alpha }_{0}\)) for CeO2 are 0.5006 eV and 0.9176 m−1, respectively. The VELF and SELF measurements of electron energy loss showcase the prerequisite CeO2 peaks at 3.3423 and 4.9600 eV, respectively. CeO2 ceramics emit UV-Blue under UV excitation and are elucidated by the electron transition in photoluminescence at room temperature. The implications are addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Brazil)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Data sharing does not smear this article, as no datasets were created or analyzed during the current study.

References

  1. R. Suresh, V. Ponnuswamy, R. Mariappan, Appl. Surf. Sci. 273, 457 (2013)

    Article  CAS  Google Scholar 

  2. S. Guo, H. Arwin, S.N. Jacobsen, K. Järrendahl, U. Helmersson, J. Appl. Phys. 77, 5369 (1995)

    Article  CAS  Google Scholar 

  3. A. El-Habib, M. Addou, A. Aouni, M. Diani, J. Zimou, H. Bakkali, Materialia 18, 101143 (2021)

    Article  CAS  Google Scholar 

  4. N. Fifere, A. Airinei, M. Asandulesa, A. Rotaru, E.L. Ursu, F. Doroftei, IJMS 23, 13883 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. S. Jaidka, S. Khan, K. Singh, Physica B 550, 189 (2018)

    Article  CAS  Google Scholar 

  6. G. Jayakumar, A. Albert Irudayaraj, A. Dhayal Raj, S. John Sundaram, K. Kaviyarasu, J. Phys. Chem. Solids 160, 110369 (2022)

    Article  CAS  Google Scholar 

  7. H.-Y. Mun, H.-G. Park, H.-C. Jeong, J.H. Lee, B.-Y. Oh, D.-S. Seo, Liq. Cryst. 44, 538 (2017)

    Article  CAS  Google Scholar 

  8. A.A. Fauzi, A.A. Jalil, N.S. Hassan, F.F.A. Aziz, M.S. Azami, I. Hussain, R. Saravanan, D.-V.N. Vo, Chemosphere 286, 131651 (2022)

    Article  CAS  PubMed  Google Scholar 

  9. D.E. Motaung, G.H. Mhlongo, P.R. Makgwane, B.P. Dhonge, F.R. Cummings, H.C. Swart, S.S. Ray, Sens. Actuators B: Chem. 254, 984 (2018)

    Article  CAS  Google Scholar 

  10. G. Manibalan, G. Murugadoss, R. Thangamuthu, R. Mohan Kumar, R. Jayavel, J. Alloys Compd. 773, 449 (2019)

    Article  CAS  Google Scholar 

  11. T. Kaur, R. Kumar, S. Khan, K. Singh, J. Kolte, Trans. Indian Ceram. Soc. 81, 127 (2022)

    Article  CAS  Google Scholar 

  12. J. Cheng, S. Huang, Y. Li, T. Wang, L. **e, X. Lu, Appl. Surf. Sci. 506, 144668 (2020)

    Article  CAS  Google Scholar 

  13. S. Logothetidis, P. Patsalas, E.K. Evangelou, N. Konofaos, I. Tsiaoussis, N. Frangis, Mater. Sci. Eng., B 109, 69 (2004)

    Article  Google Scholar 

  14. P.R. Jubu, O.S. Obaseki, A. Nathan-Abutu, F.K. Yam, Y. Yusof, M.B. Ochang, Res. Opt. 9, 100273 (2022)

    Article  Google Scholar 

  15. C.M. Muiva, T.S. Sathiaraj, J.M. Mwabora, Eur. Phys. J. Appl. Phys. 59, 10301 (2012)

    Article  Google Scholar 

  16. A.Z. Mahmoud, M. Mohamed, Appl. Phys. A 125, 589 (2019)

    Article  Google Scholar 

  17. B. Choudhury, P. Chetri, A. Choudhury, J. Exp. Nanosci. 10, 103 (2015)

    Article  CAS  Google Scholar 

  18. L. Nadjia, E. Abdelkader, B. Naceur, B. Ahmed, J. Rare Earths 36, 575 (2018)

    Article  CAS  Google Scholar 

  19. B. Choudhury, A. Choudhury, Mater. Chem. Phys. 131, 666 (2012)

    Article  CAS  Google Scholar 

  20. S.B. Aziz, E.M.A. Dannoun, D.A. Tahir, S.A. Hussen, R.T. Abdulwahid, M.M. Nofal, R.M. Abdullah, A.M. Hussein, I. Brevik, Materials 14, 1570 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. T. Kaur, K. Singh, J. Kolte, J. Phys. Chem. C 126, 18018 (2022)

    Article  CAS  Google Scholar 

  22. M.A.A. Hasan, K.A. Jasim, H.A.J. Miran, Korean J. Mater. Res. 32, 66 (2022)

    Article  Google Scholar 

  23. B. Choudhury, A. Choudhury, Curr. Appl. Phys. 13, 217 (2013)

    Article  Google Scholar 

  24. M. Zhang, Y. Chen, C. Qiu, X. Fan, C. Chen, Z. Wang, Physica E 64, 218 (2014)

    Article  CAS  Google Scholar 

  25. K. Momma, F. Izumi, J. Appl. Crystallogr. 44, 1272 (2011)

    Article  CAS  Google Scholar 

  26. I. Vashistha, S. Rohilla, IOP Conf. Ser. Mater. Sci. Eng. 872, 012170 (2020)

    Article  CAS  Google Scholar 

  27. O. Singh, A. Agarwal, S. Sanghi, J. Singh, Int. J. Appl. Ceram. Technol. 16, 119 (2019)

    Article  CAS  Google Scholar 

  28. Y. Canchanya-Huaman, A.F. Mayta-Armas, J. Pomalaya-Velasco, Y. Bendezú-Roca, J.A. Guerra, J.A. Ramos-Guivar, Nanomaterials 11, 2311 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. C.M. Magdalane, K. Kaviyarasu, J.J. Vijaya, B. Siddhardha, B. Jeyaraj, J. Photochem. Photobiol., B 163, 77 (2016)

    Article  CAS  PubMed  Google Scholar 

  30. T. Amutha, M. Rameshbabu, S. Muthupandi, K. Prabha, Mater. Today: Proc. 49, 2624 (2022)

    CAS  Google Scholar 

  31. B. Parveen, M. Hassan, Z. Khalid, S. Riaz, S. Naseem, J. Appl. Res. Technol. 15, 132 (2017)

    Article  Google Scholar 

  32. P. Shunmuga Sundaram, T. Sangeetha, S. Rajakarthihan, R. Vijayalaksmi, A. Elangovan, G. Arivazhagan, Physica B: Condens. Matter 595, 412342 (2020)

    Article  CAS  Google Scholar 

  33. A. Monshi, M.R. Foroughi, M.R. Monshi, WJNSE 02, 154 (2012)

    Article  Google Scholar 

  34. D. Nath, F. Singh, R. Das, Mater. Chem. Phys. 239, 122021 (2020)

    Article  CAS  Google Scholar 

  35. B. Himabindu, N.S.M.P. Latha Devi, B. Ra**i Kanth, Mater. Today: Proc. 47, 4891 (2021)

    CAS  Google Scholar 

  36. M. Jamal, S. Jalali Asadabadi, I. Ahmad, H.A. Rahnamaye Aliabad, Comput. Mater. Sci. 95, 592 (2014)

    Article  CAS  Google Scholar 

  37. J.C. Goldsby, J. Ceram. 2013, 1 (2013)

    Article  Google Scholar 

  38. K.B. Vinjamuri, S. Viswanadha, H. Basireddy, R.K. Borra, AMM 903, 27 (2021)

    Article  Google Scholar 

  39. M. Basak, Md.L. Rahman, Md.F. Ahmed, B. Biswas, N. Sharmin, J. Alloys Compd. 895, 162694 (2022)

    Article  CAS  Google Scholar 

  40. M.P. Deshpande, N. Garg, S.V. Bhatt, B. Soni, S.H. Chaki, AMR 665, 267 (2013)

    Article  Google Scholar 

  41. S. Singh, M.C. Rath, A.K. Singh, T. Mukherjee, O.D. Jayakumar, A.K. Tyagi, S.K. Sarkar, Radiat. Phys. Chem. 80, 736 (2011)

    Article  CAS  Google Scholar 

  42. B. Jain, A.K. Singh, A. Hashmi, Md.A.B.H. Susan, J.-P. Lellouche, Adv Compos. Hybrid Mater. 3, 430 (2020)

    Article  CAS  Google Scholar 

  43. M.A. Marzouk, F.H. ElBatal, R.M.M. Morsi, Silicon 9, 105 (2017)

    Article  CAS  Google Scholar 

  44. Y. Lai, X. Liang, S. Yang, P. Liu, Y. Zeng, C. Hu, J. Alloys Compd. 617, 597 (2014)

    Article  CAS  Google Scholar 

  45. Y. Yulizar, S. Juliyanto Sudirman, D.O.B. Apriandanu, R.M. Surya, J. Mol. Struct. 1231, 129904 (2021)

    Article  CAS  Google Scholar 

  46. T. Yan, W. Zhang, X. Chen, F. Wang, S. Bai, J. Mater. Sci. Mater. Electron. 30, 10352 (2019)

    Article  CAS  Google Scholar 

  47. S. Soni, S. Kumar, B. Dalela, S. Kumar, P.A. Alvi, S. Dalela, J. Alloys Compd. 752, 520 (2018)

    Article  CAS  Google Scholar 

  48. V. Pathak, P. Lad, A.B. Thakkar, P. Thakor, M.P. Deshpande, S. Pandya, Res. Surf. Interfaces 11, 100111 (2023)

    Article  Google Scholar 

  49. N.S. Wadatkar, S.A. Waghuley, Egyptian J. Basic Appl. Sci. 2, 19 (2015)

    Article  Google Scholar 

  50. P. Makuła, M. Pacia, W. Macyk, J. Phys. Chem. Lett. 9, 6814 (2018)

    Article  PubMed  Google Scholar 

  51. M. Radović, Z. Dohčević-Mitrović, A. Golubović, V. Fruth, S. Preda, M. Šćepanović, Z.V. Popović, Ceram. Int. 39, 4929 (2013)

    Article  Google Scholar 

  52. I.-T. Liu, M.-H. Hon, L.G. Teoh, Mater. Trans. 58, 505 (2017)

    Article  CAS  Google Scholar 

  53. A.A. Baqer, K.A. Matori, N.M. Al-Hada, A.H. Shaari, E. Saion, J.L.Y. Chyi, SSP 268, 132 (2017)

    Article  Google Scholar 

  54. E. Mena, A. Rey, E.M. Rodríguez, F.J. Beltrán, Catal. Today 280, 74 (2017)

    Article  CAS  Google Scholar 

  55. G. Sivakumari, M. Rajarajan, S. Senthilvelan, Res. Chem. Intermed. 49, 3539 (2023)

    Article  CAS  Google Scholar 

  56. T. Dhannia, S. Jayalekshmi, M.C. Santhosh Kumar, T. Prasada Rao, A. Chandra Bose, J. Phys. Chem. Solids 71, 1020 (2010)

    Article  CAS  Google Scholar 

  57. A.M.A. Henaish, H.M.H. Zakaly, H.A. Saudi, S.A.M. Issa, H.O. Tekin, M.M. Hessein, Y.S. Rammah, J. Electron. Mater. 51, 2070 (2022)

    Article  CAS  Google Scholar 

  58. N. Fifere, A. Airinei, M. Dobromir, L. Sacarescu, S.I. Dunca, Nanomaterials 11, 2596 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. M.S. El-Bana, S.S. Fouad, J. Alloys Compd. 695, 1532 (2017)

    Article  CAS  Google Scholar 

  60. M. Palard, J. Balencie, A. Maguer, J.-F. Hochepied, Mater. Chem. Phys. 120, 79 (2010)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors Dr D.K. Dhruv and Dr V.A. Patel are incredibly thankful to The Charutar Vidya Mandal University (CVMU), Vallabh Vidyanagar-388120, Anand, Gujarat, India, for financial support to carry out this work under the head of a minor research project (MRP) (File number: CVMU/RDC/MRP/SPA/2023-24/3/3/1235 dated 22-09-2023).

Funding

The authors received no grants, funding, or other assistance in preparing this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All writers contributed to the study conception and design. Material preparation, data gathering, and analysis were accomplished by S. D. Dhruv, Jayant Kolte, Pankaj Solanki, S. A. Sharko, Vanaraj Solanki, Jiten Tailor, Ketan Chaudhari, Naveen Agrawal, V. A. Patel, J. H. Markna, Bharat Kataria, and D. K. Dhruv. D. K. Dhruv wrote the first draft of the manuscript, and all authors commented on previous versions. All authors read and permitted the final manuscript.

Corresponding author

Correspondence to D. K. Dhruv.

Ethics declarations

Competing interests

The authors have no related financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhruv, S.D., Kolte, J., Solanki, P. et al. Synthesis, microstructural, rietveld refinement and optical characterizations of sol–gel grown cerium oxide ceramics. J Mater Sci: Mater Electron 35, 1202 (2024). https://doi.org/10.1007/s10854-024-12943-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12943-4

Navigation