Log in

Development of nickel oxide thin film by chemical route for supercapacitor application

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Inflation in energy needs, a concept that reflects the growing demand for energy resources, is often accompanied by an increase in their prices over time. As economies expand, populations grow, and industrial activities intensify, the requirement for energy rises significantly. To address such challenges, policymakers and energy stakeholders are continually exploring and investing in innovative solutions. The development of supercapacitive materials represents a significant stride in addressing energy needs, particularly in the context of energy storage and sustainable energy utilization. Consistent research in this field is necessary to unleash the full potential of materials for supercapacitive behavior. In the current work, nanostructured NiO thin films were developed for supercapacitor application. These films were deposited on a steel substrate (SS304) using a cost-effective and facile Chemical Bath Deposition method. The synthesized material was confirmed by XRD and FTIR analysis. The capacitance value of the obtained NiO film was 654.85 F/g at a current density of 1 A/g. This work also focused on enhancing the performance of nanostructured NiO cathode in an asymmetric hybrid supercapacitor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Data availability

Data will be made available on reasonable request.

References

  1. K. Poonam, A. Sharma, S.K. Arora, Tripathi, review of supercapacitors: materials and devices. J. Energy Storage 21, 801–825 (2019). https://doi.org/10.1016/j.est.2019.01.010

    Article  Google Scholar 

  2. G.T. Chavan, P.J. Morankar, N.A. Ahir, A.M. Teli, P. Rosaiah, B. Ahmed, A. Syed, A.M. Elgorban, J. An, C.-W. Jeon, Synthesis of multinary composite (NiMnCuCoS) electrodes: aqueous hybrid supercapacitors. J. Alloys Compd. 968, 171966 (2023). https://doi.org/10.1016/j.jallcom.2023.171966

    Article  CAS  Google Scholar 

  3. N. Choudhary, C. Li, J. Moore, N. Nagaiah, L. Zhai, Y. Jung, J. Thomas, Asymmetric supercapacitor electrodes and devices. Adv. Mater. (2017). https://doi.org/10.1002/adma.201605336

    Article  PubMed  Google Scholar 

  4. D.P. Dubal, N.R. Chodankar, P. Gomez-Romero, D.-H. Kim, Fundamentals of Binary metal oxide-based supercapacitors. Elsevier (2017). https://doi.org/10.1016/B978-0-12-810464-4.00004-8

  5. X. Zhang, Development of transitional metal hydroxide based hybrid nanomaterials for energy conversion and storage applications (1968). https://doi.org/10.26190/unsworks/22618

  6. E.S. Goda, A.A.-S. Eissa, B. Pandit, M.H. Abu Elella, Chalcogenides and phosphides for high-performance supercapacitors, in Nanostructured Materials for Supercapacitors. ed. by S. Thomas, A.B. Gueye, R.K. Gupta (Springer, Cham, 2022). https://doi.org/10.1007/978-3-030-99302-3_19

    Chapter  Google Scholar 

  7. Y. Gao, Graphene and polymer composites for supercapacitor applications: a review. Nanoscale Res. Lett. 12, 387 (2017). https://doi.org/10.1186/s11671-017-2150-5

    Article  PubMed  PubMed Central  Google Scholar 

  8. I. Melkiyur, Y. Rathinam, P.S. Kumar, A. Sankaiya, S. Pitchaiya, R. Ganesan, D. Velauthapillai, A comprehensive review on novel quaternary metal oxide and sulphide electrode materials for supercapacitor: Origin, fundamentals, present perspectives and future aspects. Renew. Sustain. Energy Rev. (2023). https://doi.org/10.1016/j.rser.2022.113106

    Article  Google Scholar 

  9. R.S. Kate, S.A. Khalate, R.J. Deokate, Overview of nanostructured metal oxides and pure nickel oxide (NiO) electrodes for supercapacitors: a review. J. Alloys Compd. 734, 89–111 (2018). https://doi.org/10.1016/j.jallcom.2017.10.262

    Article  CAS  Google Scholar 

  10. C. Yi, J. Zou, H. Yang, X. Leng, Recent advances in pseudocapacitor electrode materials. Trans. Nonferrous Metals Soc. China 28, 1980–2001 (2018). https://doi.org/10.1016/S1003-6326(18)64843-5

    Article  CAS  Google Scholar 

  11. R. Liang, Y. Du, P. **ao, J. Cheng, S. Yuan, Y. Chen, J. Yuan, J. Chen, Transition metal oxide electrode materials for supercapacitors: a review of recent developments. Nanomaterials (2021). https://doi.org/10.3390/nano11051248

    Article  PubMed  PubMed Central  Google Scholar 

  12. D. Majumdar, T. Maiyalagan, Z. Jiang, Recent progress in ruthenium oxide-based composites for supercapacitor applications. ChemElectroChem 6, 4343–4372 (2019). https://doi.org/10.1002/celc.201900668

    Article  CAS  Google Scholar 

  13. D. Majumdar, S. Ghosh, Recent advancements of copper oxide based nanomaterials for supercapacitor applications. J Energy Storage 34, 101995 (2021). https://doi.org/10.1016/j.est.2020.101995

    Article  Google Scholar 

  14. R. Kumar, S.M. Youssry, E. Joanni, S. Sahoo, G. Kawamura, A. Matsuda, Microwave-assisted synthesis of iron oxide homogeneously dispersed on reduced graphene oxide for high-performance supercapacitor electrodes. J Energy Storage 56, 105896 (2022). https://doi.org/10.1016/j.est.2022.105896

    Article  Google Scholar 

  15. S. Vijayakumar, S. Nagamuthu, G. Muralidharan, Supercapacitor studies on NiO nanoflakes synthesized through a microwave route. ACS Appl. Mater. Interfaces 5, 2188–2196 (2013). https://doi.org/10.1021/am400012h

    Article  CAS  PubMed  Google Scholar 

  16. A. Pramitha, S.S. Hegde, B.R. Bhat, S.D. George, Y.N. Sudhakar, Y. Raviprakash, Properties of Mn3O4 thin film electrodes prepared using spray pyrolysis for supercapacitor application. Mater. Chem. Phys. 307, 128213 (2023). https://doi.org/10.1016/j.matchemphys.2023.128213

    Article  CAS  Google Scholar 

  17. S.D. Raut, N.M. Shinde, B.G. Ghule, S. Kim, J.J. Pak, Q. **a, R.S. Mane, Room-temperature solution-processed sharp-edged nanoshapes of molybdenum oxide for supercapacitor and electrocatalysis applications. Chem. Eng. J. 433, 133627 (2022). https://doi.org/10.1016/j.cej.2021.133627

    Article  CAS  Google Scholar 

  18. A.A. Yadav, SnO2 thin film electrodes deposited by spray pyrolysis for electrochemical supercapacitor applications. J. Mater. Sci. Mater. Electron. 27, 1866–1872 (2016). https://doi.org/10.1007/s10854-015-3965-4

    Article  CAS  Google Scholar 

  19. Y. Chen, P. Lian, J. Feng, Y. Liu, L. Wang, J. Liu, X. Shi, Tailoring defective vanadium pentoxide/reduced graphene oxide electrodes for all-vanadium-oxide asymmetric supercapacitors. Chem. Eng. J. 429, 132274 (2022). https://doi.org/10.1016/j.cej.2021.132274

    Article  CAS  Google Scholar 

  20. J. Ahmed, M. Ubaidullah, T. Ahmad, N. Alhokbany, S.M. Alshehri, Synthesis of graphite oxide/cobalt molybdenum oxide hybrid nanosheets for enhanced electrochemical performance in supercapacitors and the oxygen evolution reaction. ChemElectroChem 6, 2524–2530 (2019). https://doi.org/10.1002/celc.201900055

    Article  CAS  Google Scholar 

  21. D. Govindarajan, K. Kirubaharan, M. Selvaraj, A. Sanni, J. Theerthagiri, M. Yong Choi, S. Kheawhom, In-situ growth of binder-free Cr/NiO thin film electrodes via co-sputtering for asymmetric supercapacitors. Appl. Surf. Sci. (2023). https://doi.org/10.1016/j.apsusc.2023.157475

    Article  Google Scholar 

  22. G.T. Chavan, R.U. Amate, H. Lee, A. Syed, A.H. Bahkali, A.M. Elgorban, C.-W. Jeon, Rational design of 3D hollow cube architecture for next-generation efficient aqueous asymmetric supercapacitors. J Energy Storage 61, 106757 (2023). https://doi.org/10.1016/j.est.2023.106757

    Article  Google Scholar 

  23. S. Verma, S. Arya, V. Gupta, S. Mahajan, H. Furukawa, A. Khosla, Erratum: performance analysis, challenges and future perspectives of nickel based nanostructured electrodes for electrochemical supercapacitors. J Mater Res Technol (2021). https://doi.org/10.1016/j.jmrt.2022.04.037

    Article  Google Scholar 

  24. J.-H. Yu, S.-H. Nam, Y.E. Gil, J.-H. Boo, The effect of ammonia concentration on the microstructure and electrochemical properties of NiO nanoflakes array prepared by chemical bath deposition. Appl. Surf. Sci. 532, 147441 (2020). https://doi.org/10.1016/j.apsusc.2020.147441

    Article  CAS  Google Scholar 

  25. R. Shafique, A. Mahmood, K. Batool, A. Ahmad, T. Yaqoob, M. Jabeen, A.U. Shah, U. Asjad, M. Rani, Graphene oxide/nickel chromite nanocomposite: optimized synthesis, structural and optical properties. ECS J. Sol. State Sci. Technolo. 10(10), 101005 (2021)

    Article  CAS  Google Scholar 

  26. Y. Gong, S. Zhang, H. Gao, Z. Ma, S. Hu, Z. Tan, Recent advances and comprehensive insights on nickel oxide in emerging optoelectronic devices, Sustain. Energy Fuels 4, 4415–4458 (2020). https://doi.org/10.1039/d0se00621a

    Article  CAS  Google Scholar 

  27. H.K. Jung, S.J. Lee, D. Han, A.R. Hong, H.S. Jang, S.H. Lee, J.H. Mun, H.J. Lee, S.H. Han, D. Yang, D.H. Kim, Au-incorporated NiO nanocomposite thin films as electrochromic electrodes for supercapacitors. Electrochim. Acta (2020). https://doi.org/10.1016/j.electacta.2019.135203

    Article  Google Scholar 

  28. L. He, W. Zhang, X. Zhang, X. Bai, J. Chen, M. Ikram, G. Zhang, K. Shi, 3D flower-like NiCo-LDH composites for a high-performance NO2 gas sensor at room temperature. Coll. Surf A. Physicochem. Eng. Asp. 603, 125142 (2020). https://doi.org/10.1016/j.colsurfa.2020.125142

    Article  CAS  Google Scholar 

  29. N.A. Mala, M.A. Dar, M. ud D. Rather, B.A. Reshi, S. Sivakumar, K.M. Batoo, Z. Ahmad, Supercapacitor and magnetic properties of NiO and manganese-doped NiO nanoparticles synthesized by chemical precipitation method. J. Mater. Sci.: Mater. Electronics (2023). https://doi.org/10.1007/s10854-023-09907-5

    Article  Google Scholar 

  30. K. John Steven Wesley, K. Shireesha, V. Divya, D. Rakesh, C.H. Shilpa Chakra, K. Sree Chandana, S. Sai Vamsi Ganesh Reddy, K. Deepti, T. Bala Narsaiah, K. Sadhana, Impact of surfactant on specific capacitance of nickel oxide nanoparticles for supercapacitor application. Bull. Mater. Sci. (2024). https://doi.org/10.1007/s12034-023-03101-3

    Article  Google Scholar 

  31. S.D. Dhas, P.S. Maldar, M.D. Patil, A.B. Nagare, M.R. Waikar, R.G. Sonkawade, V. Annasaheb, Moholkar, Synthesis of NiO nanoparticles for supercapacitor application as an efficient electrode material. Vacuum (2020). https://doi.org/10.1016/j.vacuum.2020.109646

    Article  Google Scholar 

  32. X. Liu, J. Zhao, Y. Cao, W. Li, Y. Sun, J. Lu, Y. Men, J. Hu, Facile synthesis of 3D flower-like porous NiO architectures with an excellent capacitance performance. RSC Adv. 5, 47506–47510 (2015). https://doi.org/10.1039/C5RA05231A

    Article  CAS  Google Scholar 

  33. S.-Y. Han, D.-H. Lee, Y.-J. Chang, S.-O. Ryu, T.-J. Lee, C.-H. Chang, The growth mechanism of nickel oxide thin films by room-temperature chemical bath deposition. J. Electrochem. Soc. 153, C382 (2006). https://doi.org/10.1149/1.2186767

    Article  CAS  Google Scholar 

  34. J. Xu, M. Wang, Y. Liu, J. Li, H. Cui, One-pot solvothermal synthesis of size-controlled NiO nanoparticles. Adv. Powder Technol. 30, 861–868 (2019). https://doi.org/10.1016/j.apt.2019.01.016

    Article  CAS  Google Scholar 

  35. S.G. Randive, H.M. Pathan, B.J. Lokhande, Ingredient-dependent nickel oxide synthesis for supercapacitor application. ES Energy Environ. (2023). https://doi.org/10.30919/esee8c877

    Article  Google Scholar 

  36. I. Sohail, Z. Hussain, A.N. Khan, K. Yaqoob, Synthesis and characterization of electrodeposited NiO thin film on electrode grade carbon plate for supercapacitor applications. Mater. Res. Express 4, 116412 (2017). https://doi.org/10.1088/2053-1591/aa997a

    Article  CAS  Google Scholar 

  37. M.R. Das, A. Roy, S. Mpelane, A. Mukherjee, P. Mitra, S. Das, Influence of dip** cycle on SILAR synthesized NiO thin film for improved electrochemical performance. Electrochim. Acta 273, 105–114 (2018). https://doi.org/10.1016/j.electacta.2018.04.024

    Article  CAS  Google Scholar 

  38. I.S. Grace, J. Vinola, S. Deepapriya, D.R. John, A. Aslinjensipriya, R.S. Reena, A. Chamundeeswari, M. Jose, D.S. Jerome, Synthesis and characterization of nickel oxide nanoparticles by sol-gel technique. In: AIP Conf Proc (American Institute of Physics Inc., 2020). https://doi.org/10.1063/5.0009740

  39. Z. Zhu, N. Wei, H. Liu, Z. He, Microwave-assisted hydrothermal synthesis of Ni(OH)2 architectures and their in situ thermal convention to NiO. Adv. Powder Technol. 22, 422–426 (2011). https://doi.org/10.1016/j.apt.2010.06.008

    Article  CAS  Google Scholar 

  40. P. Scherrer, Bestimmung der Größe und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse (1918) pp. 98–100

  41. J.I. Langford, A.J.C. Wilson, Scherrer after sixty years: a survey and some new results in the determination of crystallite size. J. Appl. Crystallogr. 11, 102–113 (1978). https://doi.org/10.1107/S0021889878012844

    Article  CAS  Google Scholar 

  42. V. Uvarov, I. Popov, Metrological characterization of X-ray diffraction methods at different acquisition geometries for determination of crystallite size in nano-scale materials. Mater Charact (2013). https://doi.org/10.1016/j.matchar.2013.09.002

    Article  Google Scholar 

  43. R.N. Bulakhe, C. Ryu, J.L. Gunjakar, J. Bin In, Chemical route to the synthesis of novel ternary CuCr2S4 cathodes for asymmetric supercapacitors. J. Energy Storage (2022). https://doi.org/10.1016/j.est.2022.106175

    Article  Google Scholar 

  44. T. Alammar, O. Shekhah, J. Wohlgemuth, A.-V. Mudring, Ultrasound-assisted synthesis of mesoporous β-Ni(OH)2 and NiO nano-sheets using ionic liquids. J. Mater. Chem. 22, 18252 (2012). https://doi.org/10.1039/c2jm32849f

    Article  CAS  Google Scholar 

  45. A.D. Jagadale, V.S. Kumbhar, D.S. Dhawale, C.D. Lokhande, Potentiodynamically deposited nickel oxide (NiO) nanoflakes for pseudocapacitors. J. Electroanal. Chem. 704, 90–95 (2013). https://doi.org/10.1016/j.jelechem.2013.06.020

    Article  CAS  Google Scholar 

  46. J. Zhu, J. Jiang, J. Liu, R. Ding, H. Ding, Y. Feng, G. Wei, X. Huang, Direct synthesis of porous NiO nanowall arrays on conductive substrates for supercapacitor application. J. Solid State Chem. 184, 578–583 (2011). https://doi.org/10.1016/J.JSSC.2011.01.019

    Article  CAS  Google Scholar 

  47. A. Kumar, A. Sanger, A. Kumar, R. Chandra, Single-step growth of pyramidally textured NiO nanostructures with improved supercapacitive properties. Int. J. Hydrog. Energy 42, 6080–6087 (2017). https://doi.org/10.1016/J.IJHYDENE.2016.11.036

    Article  CAS  Google Scholar 

  48. M. Zhang, Q. Li, D. Fang, I.A. Ayhan, Y. Zhou, L. Dong, C. **ong, Q. Wang, NiO hierarchical hollow nanofibers as high-performance supercapacitor electrodes. RSC Adv. 5, 96205–96212 (2015). https://doi.org/10.1039/C5RA17011G

    Article  CAS  Google Scholar 

  49. G. Manibalan, G. Murugadoss, P. Kuppusami, N. Kandhasamy, M. Rajesh Kumar, Synthesis of heterogeneous NiO nanoparticles for high-performance electrochemical supercapacitor application. J. Mater. Sci. (2021). https://doi.org/10.1007/s10854-021-05315-9

    Article  Google Scholar 

  50. M. Yao, Z. Hu, Z. Xu, Y. Liu, P. Liu, Q. Zhang, Template synthesis and characterization of nanostructured hierarchical mesoporous ribbon-like NiO as high performance electrode material for supercapacitor. Electrochim. Acta 158, 96–104 (2015). https://doi.org/10.1016/j.electacta.2014.12.058

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by a grant (NRF-2022R1A4A1032832) of the National Research Foundation (NRF) funded by The Ministry of Science and ICT (MSIT), Republic of Korea.

Author information

Authors and Affiliations

Authors

Contributions

ADN: Writing—original draft, Writing—review & editing, SPG: Writing—original draft, Writing—review & editing, PPS: Formal analysis, Software, SSK: Formal analysis, Software, RST: Writing—original draft, Writing—review & editing, HK: Formal analysis, Software, QW: Formal analysis, Software, ASV: Formal analysis, Software, SDS: Formal analysis, Supervision e, VKG Formal analysis, Supervision, PBS: Formal analysis, Supervision, ACP: Formal analysis, Software, Supervision, Writing—review & editing, JMK: Conceptualization, Funding acquisition, Project administration, Supervision, Writing—original draft, Writing—review & editing, RNB: Conceptualization, Project administration, Supervision, Writing—original draft, and Writing—review & editing.

Corresponding authors

Correspondence to Anuradha C. Pawar, Ji Man Kim or Ravindra N. Bulakhe.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest financial.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Narang, A.D., Gupta, S.P., Sanap, P.P. et al. Development of nickel oxide thin film by chemical route for supercapacitor application. J Mater Sci: Mater Electron 35, 1335 (2024). https://doi.org/10.1007/s10854-024-12934-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12934-5

Navigation