Log in

Transport properties, magnetoresistance, and temperature coefficient of resistance of perovskite NdMnO3

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Magnetoresistance and temperature coefficient of resistance (TCR) of manganites with ferromagnetism have been reported extensively, but the magnetoresistance and TCR of antiferromagnetic manganites are scarce. The transport properties, TCR, and magnetoresistance effect of antiferromagnetic NdMnO3 have been studied in this work. NdMnO3 samples exhibit semiconductor conductivity, and with the different applied magnetic fields, they still maintain semiconductor characteristics and have considerable stability. Under an applied magnetic field of 6 T, a small negative magnetoresistance of 8% appears near 150 K. Moreover, the conduction mechanism and TCR of NdMnO3 are studied. Three models, thermal activation (TA) model, small polaron (SP) model, and variable range jump (VRH) model, are used to analyze the electrical transport of NdMnO3 samples. The results show that the transport behavior of NdMnO3 samples is more consistent with the TA model. The maximum TCR is 9.4% K−1 within the low temperature region (above liquid nitrogen temperature). The TCR decreases with increasing temperature and it remains 2.5% K−1 near room temperature. Antiferromagnetic NdMnO3 has good TCR performance, which can be applied to temperature sensing field and has good application prospect in antiferromagnetic insulating electronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data are available from the corresponding author on reasonable request.

References

  1. G.A. Ovsyannikov, T.A. Shaikhulov, K.L. Stankevich, Yu. Khaydukov, N.V. Andreev, Magnetism at an iridate/manganite interface: Influence of strong spin-orbit interaction. Phys. Rev. B 102, 144401 (2020)

    Article  CAS  Google Scholar 

  2. H. Li, W. Chen, X. Luo, Y. Zheng, Enhanced tunneling magnetoresistance and spin filtering in perovskite magnetic tunnel junctions via oxygen octahedral tilting. Phys. Rev. B 106, 035126 (2022)

    Article  CAS  Google Scholar 

  3. C.X. Quintela, K. Song, D.-F. Shao, L. **e, T. Nan, T.R. Paudel, N. Campbell, X. Pan, T. Tybell, M.S. Rzchowski, E.Y. Tsymbal, S.-Y. Choi, C.-B. Eom, Epitaxial antiperovskite/perovskite heterostructures for materials design. Sci. Adv. 6, eaba4017 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Y. Zhang, W. Hao, C. Hu, X. Wang, X. Zhang, L. Li, Rare-earth-free Mn30Fe20−xCuxAl50 magnetocaloric materials with stable cubic CsCl-type structure for room-temperature refrigeration. Adv. Funct. Mater. 33, 2310047 (2023)

    Article  CAS  Google Scholar 

  5. H. Wang, H. Zhang, Y. Wang, W. Tan, D. Huo, Spin glass feature and exchange bias effect in metallic Pt/antiferromagnetic LaMnO3 heterostructure. J. Phys. Condens. Matter 33, 285802 (2021)

    Article  CAS  Google Scholar 

  6. S. Yang, Q. Chen, Y. Yang, Y. Gao, R. Xu, H. Zhang, J. Ma, Silver addition in polycrystalline La0.7Ca03MnO3: large magnetoresistance and anisotropic magnetoresistance for manganite sensors. J. Alloys Compd. 882, 160719 (2021)

    Article  CAS  Google Scholar 

  7. K. Poulsen, N.T. Zinner, Giant magnetoresistance in boundary-driven spin chains. Phys. Rev. Lett. 126, 077203 (2021)

    Article  CAS  PubMed  Google Scholar 

  8. I. Angervo, M. Saloaro, H. Palonen, H. Huhtinen, P. Paturi, T. Mäkelä, S. Majumdar, Giant magnetoresistance response in Sr2FeMoO6 based organic spin valves. Appl. Surf. Sci. 589, 152854 (2022)

    Article  CAS  Google Scholar 

  9. M. Alamdar, T. Leonard, C. Cui, B.P. Rimal, L. Xue, O.G. Akinola, T. Patrick **ao, J.S. Friedman, C.H. Bennett, M.J. Marinella, J.A.C. Incorvia, Domain wall-magnetic tunnel junction spin-orbit torque devices and circuits for in-memory computing. Appl. Phys. Lett. 118, 112401 (2021)

    Article  CAS  Google Scholar 

  10. H. Bai, X. Li, H. Pan, P. He, Z. Xu, Y. Lu, V. der Waals, Antiferroelectric magnetic tunnel junction: a first-principles study of a CrSe2/CuInP2S6/CrSe2 junction. ACS Appl. Mater. Interfaces 13, 60200 (2021)

    Article  CAS  PubMed  Google Scholar 

  11. R.J. Choudhary, A.S. Ogale, S.R. Shinde, S. Hullavarad, S.B. Ogale, T. Venkatesan, R.N. Bathe, S.I. Patil, R. Kumar, Evaluation of manganite films on silicon for uncooled bolometric applications. Appl. Phys. Lett. 84, 3846 (2004)

    Article  CAS  Google Scholar 

  12. A. Lussier, J. Dvorak, S. Stadler, J. Holroyd, M. Liberati, E. Arenholz, S.B. Ogale, T. Wu, T. Venkatesan, Y.U. Idzerda, Stress relaxation of La1/2Sr1/2MnO3 and La2/3Ca1/3MnO3 at solid oxide fuel cell interfaces. Thin Solid Films 516, 880 (2008)

    Article  CAS  Google Scholar 

  13. Y. Okimoto, T. Katsufuji, T. Ishikawa, A. Urushibara, T. Arima, Y. Tokura, Anomalous variation of optical spectra with spin polarization in double-exchange ferromagnet: La1-xSrxMnO3. Phys. Rev. Lett. 75, 109 (1995)

    Article  CAS  PubMed  Google Scholar 

  14. P.-G. De Gennes, Effects of double exchange in magnetic crystals. Phys. Rev. 118, 141 (1960)

    Article  Google Scholar 

  15. H. Zhang, Y. Wang, H. Wang, D. Huo, Room-temperature magnetoresistive and magnetocaloric effect in La1-xBaxMnO3 compounds: role of Grifths phase with ferromagnetic metal cluster above Curie temperature. J. Appl. Phys. 131, 043901 (2022)

    Article  CAS  Google Scholar 

  16. X. Hu, B. Zhao, Y. Wang, H. Wang, K. Su, H. Liu, D. Huo, The magnetic properties and the colossal magnetoresistance in wide temperature region of Pr0.7Sr03MnO3 film on pb(Mg1/3Nb2/3)0.7Ti03O3 substrate. Surf. Interfaces. 40, 103032 (2023)

    Article  CAS  Google Scholar 

  17. J. Zhang, P. Dai, J. Fernandez-Baca, E. Plummer, Y. Tomioka, Y. Tokura, Jahn-Teller phonon anomaly and dynamic phase fluctuations in La0.7Ca0.3MnO3. Phys. Rev. Lett. 86, 3823–3826 (2001)

    Article  CAS  PubMed  Google Scholar 

  18. K.I. Kugel, D.I. Khomskiĭ, The Jahn-Teller effect and magnetism: transition metal compounds. Sov. Phys. Usp. 25, 231–256 (1982)

    Article  Google Scholar 

  19. I.O. Troyanchuk, V.A. Khomchenko, S.N. Pastushonok, O.A. Novitsky, V.I. Pavlov, H. Szymczak, Magnetic properties of Nd-deficient manganites Nd0.9−xCaxMnOy. J. Magn. Magn. Mater. 303, 111–118 (2006)

    Article  CAS  Google Scholar 

  20. N. Ihzaz, M. Boudard, H. Vincent, M. Oumezzine, Magnetic structure in the segregated phases Nd0.93MnO2.96. J. Alloys Compd. 479, 445–450 (2009)

    Article  CAS  Google Scholar 

  21. N. Ihzaz, H. Vincent, G. Dezanneau, H. Roussel, J. Dhahri, M. Oumezzine, Phase segregation in the hole-doped manganite Nd0.93MnO2.96: magnetic measurements and neutron diffraction. J. Magn. Magn. Mater. 281, 221–226 (2004)

    Article  CAS  Google Scholar 

  22. Q. Hu, B. Yue, F. Yang, H. Shao, M. Bao, Y. Wang, J. Liu, Electrochemical and magnetic properties of perovskite type RMnO3 (R = La, Nd, Sm, Eu) nanofibers. J. Alloys Compd. 872, 159727 (2021)

    Article  CAS  Google Scholar 

  23. F. Bartolomé, J. Herrero-Albillos, L.M. García, J. Bartolomé, N. Jaouen, A. Rogalev, Element-specific magnetometry on negatively magnetized NdMnO3+δ. J. Appl. Phys. 97, 10A503 (2005)

    Article  Google Scholar 

  24. Y. Wang, H. Wang, W. Tan, D. Huo, Magnetization reversal, critical behavior, and magnetocaloric effect in NdMnO3: The role of magnetic ordering of Nd and Mn moments. J. Appl. Phys. 132, 183907 (2022)

    Article  CAS  Google Scholar 

  25. Y. Wang, S. Ni, H. Zhang, H. Wang, Su. Kunpeng, D. Yang, S. Huang, D. Huo, W. Tan, The negative magnetization and exchange bias effect in compound NdMnO3: the role of magnetic ordering of Nd3+ and Mn3+ ions. Appl. Phys. A 128, 839 (2022)

    Article  CAS  Google Scholar 

  26. Z. Liang, S. Yang, H. Wang, Y. Li, J. Li, B. Hou, J. Li, J. Wang, L. Wu, H. Zhang, Q. Chen, J. Ma, Temperature coefficient of resistance improvement in La0.67Ca0.33MnO3 polycrystalline ceramics with vanadium addition. Ceram. Int. 49, 13578–13585 (2023)

    Article  CAS  Google Scholar 

  27. Y. Yan, S. **, X. Yu, X. Guan, K. Wu, L. Zhao, X. Gu, X. Liu, Co-optimization of Na and K do** for improved room-temperature TCR of La0.7(Na0.3-xKx)MnO3 polycrystalline ceramics. Ceram. Int. 48, 24290–24297 (2022)

    Article  CAS  Google Scholar 

  28. A. Pal, B.S. Nagaraja, K.J. Rachana, K.V. Supriya, D. Kekuda, A. Rao, C.-R. Li, Y.-K. Kuo, Enhancement of temperature coefficient of resistance (TCR) and magnetoresistance (MR) of La0.67–xRExCa0.33MnO3 (x = 0, 0.1; RE = Gd, Nd, Sm) system via rare-earth substitution. Mater. Res. Express 7, 036102 (2020)

    Article  CAS  Google Scholar 

  29. J.C. Debnath, A.M. Strydom, Large low field magneto-resistance and temperature coefficient of resistance in La0.8Ca0.2MnO3 epitaxial thin film. J. Alloys Compd. 621, 7–11 (2015)

    Article  CAS  Google Scholar 

  30. X. Yu, S. **, X. Guan, Y. Yan, K. Wu, L. Zhao, X. Liu, Large temperature coefficient of resistivity (TCR) of La1-xCaxMnO3 films prepared by spin-coating method. J. Alloys Compd. 890, 161788 (2022)

    Article  CAS  Google Scholar 

  31. Z. Yu, H. Li, Z. Li, X. Yu, S. **, X. Guan, H. Zhang, Q. Chen, X. Liu, Improved room-temperature TCR and MR of La0.9−xKxCa0.1MnO3 ceramics by A-sites vacancy and disorder degree adjustment. J. Mater. Sci. Mater. Electron. 32, 8848–8862 (2021)

    Article  CAS  Google Scholar 

  32. X. Yu, S. **, H. Li, X. Guan, X. Gu, X. Liu, High room-temperature TCR and MR of La1-xSrxMnO3 thin films for advanced uncooled infrared bolometers and magnetic sensors. Appl. Surf. Sci. 570, 151221 (2021)

    Article  CAS  Google Scholar 

  33. S. Karadavut, F. Denbri, C. Terzioglu, O. Ozturk, S.P. Altintas, Enhancing magneto resistive features of iron-substituted La0.8Sr0.2MnO3 ceramic manganites. Ceram. Int. 48, 29620–29628 (2022)

    Article  CAS  Google Scholar 

  34. P.K. Siwach, V.P.S. Awana, H. Kishan, R. Prasad, H.K. Singh, S. Balamurugan, E. Takayama-Muromachi, O.N. Srivastava, Room temperature magneto-resistance and temperature coefficient of resistance in La0.7Ca0.3-xAgxMnO3 thin films. J. Appl. Phys. 101, 073912 (2007)

    Article  Google Scholar 

  35. S. Zhang, G. Dong, Y. Liu, H. Li, K. Chu, X. Pu, X. Yu, X. Liu, Effect of Na-do** on structural, electrical, and magnetoresistive properties of La0.7(Ag0.3-xNax)0.3MnO3 polycrystalline. ceramics. Ceram. Int. 46, 4–591 (2020)

    Google Scholar 

  36. K. Chu, J. Peng, H. Li, X. Pu, S. Zhang, G. Dong, Y. Liu, X. Liu, Enhanced room-temperature TCR of La0.67Ca0.33-xSrxMnO3 (0.06≤x≤0.11) polycrystalline ceramics by Sr content adjustment. Ceram. Int. 46, 7568–7575 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. U23A20549, 11604067, U1832143) and the Scientific Research Project of the Department of Education of Zhejiang Province (No. Y202352427). We want to thank colleagues from Bei**g Synchrotron Radiation Facility and Shanghai Synchrotron Radiation Facility for their great support.

Author information

Authors and Affiliations

Authors

Contributions

Haochen Wang, Gefei Lu, and Haiou Wang collected the data and written the original draft; Kunpeng Su, Shuai Huang, and Lin Yang participated in the material preparation and the data analysis; Haiou Wang and Weishi Tan were the leaders of the project, guiding experimental design, data collation and analysis, article writing, and revision. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Weishi Tan or Haiou Wang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Lu, G., Su, K. et al. Transport properties, magnetoresistance, and temperature coefficient of resistance of perovskite NdMnO3. J Mater Sci: Mater Electron 35, 1097 (2024). https://doi.org/10.1007/s10854-024-12879-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12879-9

Navigation