Log in

Fabrication of BaTiO3/NiFe2O4 multiferroic laminated composite systems for magnetoelectric applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The multiferroic magnetoelectric 2–2 laminated composite systems with BaTiO3 and NiFe2O4 as the ferroelectric and ferrimagnetic phases were successfully fabricated by co-firing technique. For this phase, pure BaTiO3 and NiFe2O4 were successfully synthesized by sol–gel and polyol method, respectively. The structural, microstructural, multiferroic and magnetoelectric coupling properties of phase pure and co-fired systems were investigated using X-ray diffraction, HR-TEM, SEM–EDX, P–E Loop, VSM and magnetoelectric coupling analysis. The multiferroic and magnetoelectric coupling properties of the laminated systems were compared with the mixed system having similar weight percentage of BaTiO3 and NiFe2O4. The fabricated composite systems show good multiferroic and magnetoelectric properties. Compared to mixed composite systems, the laminated structure has an enhanced magnetoelectric (ME) coupling of 6.42 mV/cm.Oe. This variation in ME coupling is attributed to the low leakage current effects in the laminated systems. The ME coupling in the laminates varies with the nature and number of layers. For laminated composite systems, the ME coupling coefficient is found to increase from 6.42 mV/cm.Oe to 10.48 mV/cm.Oe with increase in the number of layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Data availability

Data will be made available on reasonable request.

References

  1. M.M. Vopson, Crit. Rev. Solid State Mater. Sci. 40, 223 (2015). https://doi.org/10.1080/10408436.2014.992584

    Article  CAS  Google Scholar 

  2. G. Schileo, Prog. Solid State Chem. 41, 87 (2013). https://doi.org/10.1016/j.progsolidstchem.2013.09.001

    Article  CAS  Google Scholar 

  3. D.K. Pradhan, S. Kumari, P.D. Rack, Nanomaterials (2020). https://doi.org/10.3390/nano10102072

    Article  PubMed  PubMed Central  Google Scholar 

  4. K. Sakthipandi, V. Rajendran, T. Jayakumar, B. Raj, P. Kulandivelu, J. Alloys Compd. 509, 3457 (2011)

    Article  CAS  Google Scholar 

  5. K. Sakthipandi, V. Rajendran, T. Jayakumar, Mater. Res. Bull. 48, 1651 (2013)

    Article  CAS  Google Scholar 

  6. R.R. Kanna, K. Sakthipandi, A.S. Kumar, N.R. Dhineshbabu, S.M.S.M.A. Maraikkayar, A.S. Afroze, R.B. Jotania, M. Sivabharathy, Ceram. Int. 46, 13695 (2020)

    Article  CAS  Google Scholar 

  7. C.W. Nan, M.I. Bichurin, S. Dong, D. Viehland, G. Srinivasan, J. Appl. Phys. (2008). https://doi.org/10.1063/1.2836410

    Article  Google Scholar 

  8. Y. Wang, J. Hu, Y. Lin, C. Nan, NPG Asia Mater. 2, 61 (2010). https://doi.org/10.1038/asiamat.2010.32

    Article  Google Scholar 

  9. P. Barone, S. Picozzi, Comptes Rendus Phys. 1, 1 (2015). https://doi.org/10.1016/j.crhy.2015.01.009

    Article  CAS  Google Scholar 

  10. C. Pascual-Gonzalez, G. Schileo, A. Feteira, Single-Phase Composite and Laminate Multiferroics (Elsevier, 2018)

    Book  Google Scholar 

  11. A. Ahlawat, S. Satapathy, P. Deshmukh, M.M. Shirolkar, A.K. Sinha, A.K. Karnal, Appl. Phys. Lett. (2017). https://doi.org/10.1063/1.5008443

    Article  Google Scholar 

  12. J.P. Praveen, V.R. Monaji, E. Chandrakala, S. Indla, V. Subramanian, D. Das, J. Alloys Compd. 750, 392–400 (2018). https://doi.org/10.1016/j.jallcom.2018.04.026

    Article  CAS  Google Scholar 

  13. J. Ma, J. Hu, Z. Li, C.W. Nan, Adv. Mater. 23, 1062 (2011). https://doi.org/10.1002/adma.201003636

    Article  CAS  PubMed  Google Scholar 

  14. A. Srinivas, R.V. Krishnaiah, V.L. Niranjani, S.V. Kamat, T. Karthik, S. Asthana, Ceram. Int. 41, 1980 (2015). https://doi.org/10.1016/j.ceramint.2014.08.127

    Article  CAS  Google Scholar 

  15. R. Sharma, R.P. Tandon, J. Mater. Sci. Mater. Electron. 26, 5287 (2015). https://doi.org/10.1007/s10854-015-3065-5

    Article  CAS  Google Scholar 

  16. G. Srinivasan, E.T. Rasmussen, J. Gallegos, R. Srinivasan, Y.I. Bokhan, V.M. Laletin, Phys. Rev. B—Condens. Matter Mater. Phys. (2001). https://doi.org/10.1103/PhysRevB.64.214408

    Article  Google Scholar 

  17. R.A. Islam, S. Priya, Appl. Phys. Lett. 89, 109 (2006). https://doi.org/10.1063/1.23611180

    Article  Google Scholar 

  18. Y. Liu, G. Xu, Y. **e, H. Lv, C. Huang, Y. Chen, Z. Tong, J. Shi, R. **ong, Ceram. Int. 44, 9649 (2018). https://doi.org/10.1016/j.ceramint.2018.02.192

    Article  CAS  Google Scholar 

  19. H. Yang, G. Zhang, Y. Lin, J. Alloys Compd. 644, 390 (2015). https://doi.org/10.1016/j.jalcom.2015.05.020

    Article  CAS  Google Scholar 

  20. S. Dinesh Kumar, J. Magesh, V. Subramanian, J. Alloys Compd. 753, 595–600 (2018). https://doi.org/10.1016/j.jallcom.2018.04.275

    Article  CAS  Google Scholar 

  21. Y. Wang, Y. Pu, Y. Shi, Y. Cui, J. Mater. Sci. Mater. Electron. 28, 11125 (2017). https://doi.org/10.1007/s10854-017-6899-1

    Article  CAS  Google Scholar 

  22. P. Pravee J, V.R. Monaji, S.D. Kumar, V. Subramanian, D. Das, Ceram. Int. 44, 4298 (2018). https://doi.org/10.1016/j.ceramint.2017.12.018

    Article  CAS  Google Scholar 

  23. D.S. Lam, N.N. Tung, D.D. Dung, B.X. Khuyen, V.D. Lam, T.D. Thanh, Mater. Res. Express (2022). https://doi.org/10.1088/2053-1591/ac7fe1

    Article  Google Scholar 

  24. D. Padmapriya, D. Dhayanithi, M.T. Rahul, N. Kalarikkal, N.V. Giridharan, Appl. Phys. A Mater. Sci. Process. 127, 1 (2021). https://doi.org/10.1007/s00339-021-04431-x

    Article  CAS  Google Scholar 

  25. R. Adnan Islam, S. Priya, Adv. Condens. Matter. Phys. (2012). https://doi.org/10.1155/2012/320612

    Article  Google Scholar 

  26. K.P.C. Dhanyaprabha, B. Jacob, M. Mohan, I.A. Al-Omari, S.H. Al-Harthi, M.T.Z. Myint, H. Thomas, Phys. Status Solidi Appl. Mater. Sci. 218, 1 (2021). https://doi.org/10.1002/pssa.202100193

    Article  CAS  Google Scholar 

  27. F.D. Cortés-Vega, C. Montero-Tavera, J.M. Yañez-Limón, Bol.La Soc. Esp. Ceram. y Vidr. 62, 284–291 (2023). https://doi.org/10.1016/j.bsecv.2022.03.002

    Article  CAS  Google Scholar 

  28. V.R. Mudinepalli, L. Feng, W.C. Lin, B.S. Murty, J. Adv. Ceram. 4, 46 (2015). https://doi.org/10.1007/s40145-015-0130-8

    Article  CAS  Google Scholar 

  29. R. Revathy, N. Kalarikkal, M.R. Varma, K.P. Surendran, J. Alloys Compd. 889, 161667 (2022). https://doi.org/10.1016/j.jallcom.2021.161667

    Article  CAS  Google Scholar 

  30. M. Muneeswaran, A. Akbari-Fakhrabadi, M.A. Gracia-Pinilla, J.C. Denardin, N.V. Giridharan, Sci. Rep. 11, 1 (2021). https://doi.org/10.1038/s41598-021-81867-4

    Article  CAS  Google Scholar 

  31. N. Ponpandian, A. Narayanasamy, C.N. Chinnasamy, N. Sivakumar, J.M. Greneche, K. Chattopadhyay, K. Shinoda, B. Jeyadevan, K. Tohji, Appl. Phys. Lett. 86, 1 (2005). https://doi.org/10.1063/1.1925755

    Article  CAS  Google Scholar 

  32. L.P. Curecheriu, M.T. Buscaglia, V. Buscaglia, L. Mitoseriu, P. Postolache, A. Ianculescu, P. Nanni, J. Appl. Phys. (2010). https://doi.org/10.1063/1.3340844

    Article  Google Scholar 

  33. W. Chen, Z.H. Wang, W. Zhu, O.K. Tan, J. Phys. D Appl. Phys. (2009). https://doi.org/10.1088/0022-3727/42/7/075421

    Article  Google Scholar 

  34. A. Khamkongkaeo, P. Jantaratana, C. Sirisathitkul, T. Yamwong, S. Maensiri, Trans. Nonferrous Met. Soc. China 21, 2438 (2011). https://doi.org/10.1016/S1003-6326(11)61033-9

    Article  CAS  Google Scholar 

  35. F. Saffari, P. Kameli, M. Rahimi, H. Ahmadvand, H. Salamati, Ceram. Int. 41, 7352 (2015). https://doi.org/10.1016/j.ceramint.2015.02.038

    Article  CAS  Google Scholar 

  36. S. Sharma, S. Thakur, J. Shah, R.K. Kotnala, N.S. Negi, J. Mater. Sci. Mater. Electron. 32, 6570 (2021). https://doi.org/10.1007/s10854-021-05373-z

    Article  CAS  Google Scholar 

  37. S. Sharma, H. Sharma, S. Thakur, J. Shah, R.K. Kotnala, N.S. Negi, J. Magn. Magn. Mater. 538, 168243 (2021). https://doi.org/10.1016/j.jmmm.2021.168243

    Article  CAS  Google Scholar 

  38. R.M. Thankachan, B. Raneesh, A. Mayeen, S. Karthika, S. Vivek, S.S. Nair, S. Thomas, N. Kalarikkal, J. Alloys Compd. 731, 288 (2018). https://doi.org/10.1016/j.jallcom.2017.09.309

    Article  CAS  Google Scholar 

  39. K.C. Dhanyaprabha, B. Jacob, M. Mohan, I.A. Al-omari, S.H. Al-harthi, M.T.Z. Myint, H. Thomas, Mater. Sci. Eng. B 298, 116859 (2023)

    Article  CAS  Google Scholar 

  40. M.M. Devi, A. Anand, R.K. Veena, K. Nandakumar, S. Sagar, J. Mater. Sci. Mater. Electron. 32, 27073 (2021). https://doi.org/10.1007/s10854-021-07078-9

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank St. Thomas College Thrissur, CLIF Kariavattom, and IIT Roorkee, for providing XRD, SEM-EDX, and VSM measurement facilities. The authors are grateful to Dr. Nandakumar Kalarikkal, Rahul M. T. and Anu A. S. of IIUCNN, MG University Kottayam for ME measurement and HR-TEM measurement. Author K. C. Dhanyaprabha wishes to acknowledge Department of Science and Technology, India for the financial support under Women Scientist Scheme-A (SR/WOS-A/PM-65/2017). Hysen Thomas acknowledges financial support received from Kerala State Council for Science, Technology and Environment under Science Research Scheme (KSCSTE/1483/2019).

Funding

Funding was provided by Department of Science and Technology under Women Scientist Scheme A (WOS-A [SR/WOS-A/PM-65/2017]) and Kerala State Council for Science, Technology and Environment under Science Research Scheme (KSCSTE/1483/2019).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed and participated in conception, design, analysis and interpretation, also the final manuscript was approved by them.

Corresponding author

Correspondence to Hysen Thomas.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhanyaprabha, K.C., Jacob, B., Mohan, M. et al. Fabrication of BaTiO3/NiFe2O4 multiferroic laminated composite systems for magnetoelectric applications. J Mater Sci: Mater Electron 35, 1117 (2024). https://doi.org/10.1007/s10854-024-12856-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12856-2

Navigation