Log in

The effects of ceramic fillers’ performance and preparation process on PZT-based/P(VDF-TrFE) flexible composite films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Flexible piezoelectric composite films have piezoelectric properties and good flexibility. Therefore, it has broad application prospects in wearable electronic products, electric sensors, etc. In this paper, traditional solid-state and hydrothermal methods were used to prepare Pb(Zr0.52Ti0.48) (PZT) and Pb0.95Sr0.05(Zr0.52Ti0.48) (PSZT) ceramic fillers. PZT-based/P(VDF-TrFE) composite films with a thickness of 0.1 mm were prepared by introducing fillers into the matrix by solution casting method, and the effect of fillers on the properties of flexible piezoelectric composite films was investigated. The experimental results show that the piezoelectric and dielectric properties of the flexible piezoelectric composite film can be improved by changing the processing method or the formula of the piezoelectric ceramic fillers with a better piezoelectric property. Compared with the pure P(VDF-TrFE) film, the introduction of ceramic fillers or varying the processing method of ceramic fillers can both stimulate a phase transition from α to β of the P(VDF-TrFE) matrix. Among them, the composite film with the PSZT filler prepared through the hydrothermal method has the most β phase content. It has the best electrical properties and exhibits good tensile strength and elongation at break. Its d33 = 18.3 pC/N, εr = 14, tanδ = 0.16, the maximum output voltage is 6.08 V, the tensile strength is 37.1 MPa, and the elongation at break is 757.7%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Q.Z. Sun, P. Mao, L.X. Zhang, J.P. Wang, Y.Y. Zhao, F. Kang, Significantly enhanced dielectric and energy storage performance of AlN/KNbO3/PVDF sandwich-structured composites via introducing the AlN/PVDF insulating layers. Ceram. Int. 46, 9990–9996 (2020)

    Article  CAS  Google Scholar 

  2. B. Nayak, S. Anwar, A. Kumar, S. Anwar, Modulating energy harvesting behavior of PVDF piezo-polymer by incorporation of BCZT ceramic filler. ACS Appl. Electron. Mater. 6, 1189–1203 (2024)

    Article  CAS  Google Scholar 

  3. T. Nagaraja, S.T. Dadami, S.R. Manohara, B. Angadi, Synthesis and characterization of flexible films of PVDF/Pb(Fe0.585Nb0.25W0.165)O3 polymer multiferroic composites. AIP Conf. Proc. 2142, 70023 (2019)

    Article  Google Scholar 

  4. S.A. Riquelme, K. Ramam, Dielectric and piezoelectric properties of lead free BZT-BCT/PVDF flexible composites for electronic applications. Mater. Res. Express 6, 116331 (2019)

    Article  Google Scholar 

  5. P.K. Mahato, S. Sen, Effect of surface modification of ceramic particles by SDS on the electrical properties of PZT-PVDF and BT-PVDF composites: interface effect. J. Mater. Sci. Mater. Electron. 26, 2969–2976 (2015)

    Article  CAS  Google Scholar 

  6. A. Tripathy, N.P.M.J. Raj, S.J. Kim, A. Ramadoss, Elucidating the piezoelectric, ferroelectric, and dielectric performance of lead-free KNN/PVDF and its copolymer-based flexible composite films. ACS Appl. Electron. Mater. 5, 5422–5431 (2023)

    Article  CAS  Google Scholar 

  7. R. Li, J. Zhou, H.J. Liu, J.Z. Pei, Effect of polymer matrix on the structure and electric properties of piezoelectric lead zirconatetitanate/polymer composites. Materials 10, 945 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  8. Y.P. Qi, L.J. Pan, L. Ma, P. Liao, J.X. Ge, D.H. Zhang, Q.Q. Zheng, B.W. Yu, Y.X. Tang, D.Z. Sun, Investigation on FT-IR spectra and dielectric property of PVDF/inorganic composites. J. Mater. Sci. Mater. Electron. 24, 1446–1450 (2013)

    Article  CAS  Google Scholar 

  9. S. Dash, R.N.P. Choudhary, A. Kumar, M.N. Goswami, Enhanced dielectric properties and theoretical modeling of PVDF–ceramic composites. J. Mater. Sci. Mater. Electron. 30, 19309–19318 (2019)

    Article  CAS  Google Scholar 

  10. G.J. Zhang, Q.L. Liao, Z. Zhang, Q.J. Liang, Y.L. Zhao, X. Zheng, Y. Zhang, Novel piezoelectric paper-based flexible nanogenerators composed of BaTiO3 nanoparticles and bacterial cellulose. Adv. Sci. 3, 1500257 (2016)

    Article  Google Scholar 

  11. Y.Y. Zhang, X.R. Liu, J.Y. Yu, M.Z. Fan, X.M. Ji, B.Z. Sun, P.H. Hu, Optimizing the dielectric energy storage performance in P(VDF-HFP) nanocomposite by modulating the diameter of PZT nanofibers prepared via electrospinning. Compos. Sci. Technol. 184, 107838 (2019)

    Article  CAS  Google Scholar 

  12. C. Zhang, H.J. Sun, Q.Y. Zhu, Study on flexible large-area poly(vinylidene fluoride)-based piezoelectric films prepared by extrusion-casting process for sensors and microactuators. Mater. Chem. Phys. 275, 125221 (2022)

    Article  CAS  Google Scholar 

  13. Z. Mirzazadeh, Z. Sherafat, E. Bagherzadeh, Physical and mechanical properties of PVDF/KNN composite produced via hot compression molding. Ceram. Int. 47, 6211–6219 (2021)

    Article  CAS  Google Scholar 

  14. S.K. Mahadeva, K. Walus, B. Stoeber, Piezoelectric paper fabricated via nanostructured barium titanate functionalization of wood cellulose fibers. ACS Appl. Mater. Interfaces 6, 7547–7553 (2014)

    Article  CAS  PubMed  Google Scholar 

  15. C.T. Pan, S.Y. Wang, C.K. Yen, A. Kumar, S.W. Kuo, J.L. Zheng, Z.H. Wen, R. Singh, S.P. Singh, M.T. Khan, R.K. Chaudhary, X.F. Dai, A.C. Kaushik, D.Q. Wei, Y.L. Shiue, W.H. Chang, Polyvinylidene fluoride-added ceramic powder composite near-field electrospinned piezoelectric fiber-based low-frequency dynamic sensors. ACS Omega 5, 17090–17101 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. C. Zhang, D.Y. Zheng, S. Luo, Y. Zhang, B. Li, Influence of component content on the properties of PSZN-PSNN-PSZT ceramics. Mater. Res. Express 8, 056305 (2021)

    Article  CAS  Google Scholar 

  17. S.F. Wang, Y.R. Wang, T. Mahalingam, J.P. Chu, K.U. Lin, Characterization of hydrothermally synthesized lead zirconate titanate (PZT) ceramics. Mater. Chem. Phys. 87, 53–58 (2004)

    Article  CAS  Google Scholar 

  18. I.R. Abothu, S.F. Liu, S. Komarneni, Q.H. Li, Processing of Pb(Zr0.52Ti0.48)O3 (PZT) ceramics from microwave and conventional hydrothermal powders. Mater. Res. Bull. 34, 1411–1419 (1999)

    Article  CAS  Google Scholar 

  19. B.S. Yang, C.Y. Shin, C.W. Won, Effects of Sr on the characteristics of PZT ceramics prepared by hydrothermal process. J. Korean Ceram. Soc. 45, 681–687 (2008)

    Article  CAS  Google Scholar 

  20. C. Zhang, H.J. Sun, Q.Y. Zhu, Preparation and property enhancement of poly(vinylidene fluoride) (PVDF)/lead zirconate titanate (PZT) composite piezoelectric films. J. Electron. Mater. 50, 6426–6437 (2021)

    Article  CAS  Google Scholar 

  21. N. Chamankar, R. Khajavi, A.A. Yousefi, A. Rashidi, F. Golestanifard, A flexible piezoelectric pressure sensor based on PVDF nanocomposite fibers doped with PZT particles for energy harvesting applications. Ceram. Int. 46, 19669–19681 (2020)

    Article  CAS  Google Scholar 

  22. S. Revathi, L.J. Kennedy, S.K.K. Basha, R. Padmanabhan, Synthesis, structural, optical and dielectric properties of nanostructured 0–3 PZT/PVDF composite films. J. Nanosci. Nanotechnol. 18, 4953–4962 (2018)

    Article  CAS  PubMed  Google Scholar 

  23. P. Martinsa, A.C. Lopesa, M.S. Lanceros, Electroactive phases of poly(vinylidene fluoride): determination, processing and applications. Prog. Polym. Sci. 39, 683–706 (2014)

    Article  Google Scholar 

  24. A. Mayeen, M.S. Kala, M.S. Jayalakshmy, S. Thomas, D. Rouxel, J. Philip, R.N. Bhowmik, N. Kalarikkal, Dopamine functionalization of BaTiO3: aneffective strategy for the enhancement of electrical, magnetoelectric and thermal properties of BaTiO3-PVDF-TrFE nanocomposites. Dalton Trans. 47, 2039–2051 (2018)

    Article  CAS  PubMed  Google Scholar 

  25. S.A. Haddadi, R.S.A. Ahmad, S. Talebi, S. Fattahpour, M. Hasany, Investigation of the effect of nanosilica on rheological, thermal, mechanical, structural, and piezoelectric properties of PVDF nanofibers fabricated using electrospinning technique. Ind. Eng. Chem. Res. 56, 12596–12607 (2017)

    Article  CAS  Google Scholar 

  26. C. Zhang, W. Wei, H.J. Sun, Q.Y. Zhu, Performance enhancements in poly(vinylidene fluoride)-based piezoelectric films prepared by the extrusion-casting process. J. Mater. Sci. Mater. Electron. 32, 21837–21847 (2021)

    Article  CAS  Google Scholar 

  27. R. Chu, L. Weng, L.Z. Guan, X.M. **ao, Preparation and dielectric properties of ZlF-67/PVDF composite film. Insul. Mater. 56, 32–38 (2023)

    Google Scholar 

  28. X.L. Chen, Y.N. Liang, M. Yin, S. Roy, G. Marom, Y.F. Men, X. Hu, Exceptional enhancement of ductility and toughness in poly(vinylidene fluoride)/carbon nanotubes composites. J. Appl. Polym. Sci. 43610, 1–8 (2016)

    Google Scholar 

  29. X.D. Sang, X.J. Li, D.D. Zhang, X.L. Zhang, H.P. Wang, S.S. Li, Improved dielectric properties and energy-storage densities of BaTiO3-doped PVDF composites by heat treatment and surface modification of BaTiO3. J. Phys. D 55, 215501 (2022)

    Article  CAS  Google Scholar 

  30. A. Pal, A. Sasmal, B. Manoj, D.P. Rao, A.K. Haldar, S. Sen, Enhancement in energy storage and piezoelectric performance of three phase (PZT/MWCNT/PVDF) composite. Mater. Chem. Phys. 244, 122639 (2020)

    Article  CAS  Google Scholar 

  31. W. Ouyang, S. Sheng, F.L. Chen, Z.N. Tu, Q.C. Jiang, Q.Y. Ding, J. Wen, Enhanced dielectric properties of ferroelectric polymer composites by surface-modified BaTiO3 particles. Polym. Compos. (2024). https://doi.org/10.1002/pc.28288

    Article  Google Scholar 

  32. B.C. Zhou, R. Li, J. Cai, J. Xu, Z.H. Zhao, J.Z. Pei, Grain size effect on electric properties of novel BaTiO3/PVDF composite piezoelectric ceramics. Mater. Res. Express. 5, 95510 (2018)

    Article  Google Scholar 

  33. Q.M. Zhang, V. Bharti, X. Zhao, Giant electrostriction and relaxor ferroelectric behavior in electron-irradiated poly(vinylidene fluoride-trifluoroethylene) copolymer. Science 280, 2101–2104 (1998)

    Article  CAS  PubMed  Google Scholar 

  34. J. Yan, Y.G. Jeong, Roles of carbon nanotube and BaTiO3 nanofiber in the electrical, dielectric and piezoelectric properties of flexible nanocomposite generators. Compos. Sci. Technol. 144, 1–10 (2017)

    Article  CAS  Google Scholar 

  35. H.H. Singh, S. Singh, N. Khare, Design of flexible PVDF/NaNbO3/RGO nanogenerator and understanding the role of nanofillers in the output voltage signal. Compos. Sci. Technol. 149, 127–133 (2017)

    Article  CAS  Google Scholar 

  36. C. Shu, Research on environmentally friendly BT-based flexible piezoelectric materials (Guizhou University, Guizhou, 2022)

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of the Guizhou Provincial Science and Technology Department (Grant Nos. QKHJC-ZK [2021] ZD 049 and QKHZC-ZK [2022] YB 080).

Funding

Funding was provided by Science and Technology Program of Guizhou Province (Grant Nos. QKHJC-ZK [2021] ZD 049, QKHZC-ZK[2022] YB080).

Author information

Authors and Affiliations

Authors

Contributions

All authors have given approval to the final version of the manuscript.

Corresponding author

Correspondence to De-Yi Zheng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Zheng, DY., Wang, CQ. et al. The effects of ceramic fillers’ performance and preparation process on PZT-based/P(VDF-TrFE) flexible composite films. J Mater Sci: Mater Electron 35, 1081 (2024). https://doi.org/10.1007/s10854-024-12783-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12783-2

Navigation