Log in

Development of magnetically separable MoS2/NiFe2O4 heterostructure for improved photocatalytic efficiency of malachite green (MG) degradation

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Photocatalysis is a multifaceted phenomenon that can be employed for diverse applications, such as waste management and the treatment of water resources. Through a hydrothermal process, a magnetic nanocomposite comprising MoS2 and NiFe2O4 with optical activity was effectively synthesized. The produced photocatalysts were subjected to different methods to investigate the physiochemical properties of the materials. The optical band-gap values of the fabricated nanocomposite were measured to be 1.75 and 1.57 eV accordingly for NiFe2O4 and MoS2/NiFe2O4 which were established by UV–Visible absorption spectrum via Tauc’s relation. From the BET study, the surface area of prepared MoS2/NiFe2O4 NCs was achieved to be 71.05 m2 g−1. The photocatalytic efficacy was assessed by observing malachite green degradation in the existence of visible light conditions. The MoS2/NiFe2O4 nanocomposite contains degradation efficiency of 98.28% in 140 min under visible source toward malachite green and demonstrated favorable reusability potential through magnetic separation. This finding indicates that the activity of synthesized nanocomposite is superior to that of isolated MoS2 and NiFe2O4 NPs. A plausible mechanism for photocatalysis was explicated with charge carriers and scavengers of free radicals. The primary contributors to dye degradation were responsible to be the OH radical and holes species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 2
Fig. 9

Similar content being viewed by others

Data availability

The corresponding author can provide the datasets created and/or analyzed during the current work upon reasonable request.

References

  1. M.U. Nisa, A.G. Abid, S. Gouadria, T. Munawar, Z.A. Alrowaili, M. Abdullah, M.S. Al-Buriahi, F. Iqbal, M.F. Ehsan, M.N. Ashiq, Boosted electron-transfer/separation of SnO2/CdSe/Bi2S3 heterostructure for excellent photocatalytic degradation of organic dye pollutants under visible light. Surf. Interfaces 31, 102012 (2022). https://doi.org/10.1016/J.SURFIN.2022.102012

    Article  CAS  Google Scholar 

  2. T.E. Aniyikaiye, T. Oluseyi, J.O. Odiyo, J.N. Edokpayi, Physico-chemical analysis of wastewater discharge from selected paint industries in Lagos, Nigeria. Int. J. Environ. Res. Public Heal. 16, 1235 (2019). https://doi.org/10.3390/IJERPH16071235

    Article  CAS  Google Scholar 

  3. S. Nawaz, A. Tabassum, S. Muslim, T. Nasreen, A. Baradoke, T.H. Kim, G. Boczkaj, T. Jesionowski, M. Bilal, Effective assessment of biopolymer-based multifunctional sorbents for the remediation of environmentally hazardous contaminants from aqueous solutions. Chemosphere 329, 138552 (2023). https://doi.org/10.1016/J.CHEMOSPHERE.2023.138552

    Article  CAS  PubMed  Google Scholar 

  4. M.M. Aljohani, S.D. Al-Qahtani, M. Alshareef, M.G. El-Desouky, A.A. El-Bindary, N.M. El-Metwaly, M.A. El-Bindary, Highly efficient adsorption and removal bio-staining dye from industrial wastewater onto mesoporous Ag-MOFs. Process. Saf. Environ. Prot. 172, 395–407 (2023). https://doi.org/10.1016/J.PSEP.2023.02.036

    Article  CAS  Google Scholar 

  5. X. Li, W. Zhang, S. Lai, Y. Gan, J. Li, T. Ye, J. You, S. Wang, H. Chen, W. Deng, Y. Liu, W. Zhang, G. Xue, Efficient organic pollutants removal from industrial paint wastewater plant employing Fenton with integration of oxic/hydrolysis acidification/oxic. Chem. Eng. J. 332, 440–448 (2018). https://doi.org/10.1016/J.CEJ.2017.09.008

    Article  CAS  Google Scholar 

  6. S. Taghavi Fardood, F. Moradnia, S. Heidarzadeh, A. Naghipour, Green synthesis, characterization, photocatalytic and antibacterial activities of copper oxide nanoparticles of copper oxide nanoparticles. Nanochem. Res. 8, 134–140 (2023). https://doi.org/10.22036/NCR.2023.02.006

    Article  Google Scholar 

  7. M. Abudllah, M. Al Huwayz, N. Alwadai, S. Manzoor, M.U. Nisa, P. John, M.I. Ghori, S. Aman, M.S. Al-Buriahi, M.N. Ashiq, Facile fabrication of ternary CuO/CuS/ZnS for photodegradation of methylene blue. J. Korean Ceram. Soc. 60, 569–580 (2023). https://doi.org/10.1007/S43207-023-00287-4/FIGURES/9

    Article  CAS  Google Scholar 

  8. F. Medrano-Rodríguez, A. Picos-Benítez, E. Brillas, E.R. Bandala, T. Pérez, J.M. Peralta-Hernández, Electrochemical advanced oxidation discoloration and removal of three brown diazo dyes used in the tannery industry. J. Electroanal. Chem. 873, 114360 (2020). https://doi.org/10.1016/J.JELECHEM.2020.114360

    Article  Google Scholar 

  9. M.F. Abid, M.A. Zablouk, A.M. Abid-Alameer, Experimental study of dye removal from industrial wastewater by membrane technologies of reverse osmosis and nanofiltration. Iran. J. Environ. Heal. Sci. Eng. 9, 1–9 (2012). https://doi.org/10.1186/1735-2746-9-17/TABLES/6

    Article  Google Scholar 

  10. M.T. Yagub, T.K. Sen, S. Afroze, H.M. Ang, Dye and its removal from aqueous solution by adsorption: a review. Adv. Colloid Interface Sci. 209, 172–184 (2014). https://doi.org/10.1016/J.CIS.2014.04.002

    Article  CAS  PubMed  Google Scholar 

  11. B. Shi, G. Li, D. Wang, C. Feng, H. Tang, Removal of direct dyes by coagulation: the performance of preformed polymeric aluminum species. J. Hazard. Mater. 143, 567–574 (2007). https://doi.org/10.1016/J.JHAZMAT.2006.09.076

    Article  CAS  PubMed  Google Scholar 

  12. S.M. Alardhi, T.M. Albayati, J.M. Alrubaye, A hybrid adsorption membrane process for removal of dye from synthetic and actual wastewater. Chem. Eng. Process. - Process Intensif. 157, 108113 (2020). https://doi.org/10.1016/J.CEP.2020.108113

    Article  CAS  Google Scholar 

  13. S.C.M. Signorelli, J.M. Costa, A.F. de Almeida Neto, Electrocoagulation-flotation for orange II dye removal: kinetics, costs, and process variables effects. J. Environ. Chem. Eng. 9, 106157 (2021). https://doi.org/10.1016/J.JECE.2021.106157

    Article  CAS  Google Scholar 

  14. M.T. Kiani, A. Ramazani, S. Taghavi Fardood, Green synthesis and characterization of Ni0.25Zn0.75Fe2O4 magnetic nanoparticles and study of their photocatalytic activity in the degradation of aniline. Appl. Organomet. Chem. 37, e7053 (2023). https://doi.org/10.1002/AOC.7053

    Article  CAS  Google Scholar 

  15. D. Van Thuan, H.L. Ngo, H.P. Thi, T.T.H. Chu, Photodegradation of hazardous organic pollutants using titanium oxides -based photocatalytic: a review. Environ. Res. 229, 116000 (2023). https://doi.org/10.1016/J.ENVRES.2023.116000

    Article  PubMed  Google Scholar 

  16. D. Kanakaraju, A. Chandrasekaran, Recent advances in TiO2/ZnS-based binary and ternary photocatalysts for the degradation of organic pollutants. Sci. Total. Environ. 868, 161525 (2023). https://doi.org/10.1016/J.SCITOTENV.2023.161525

    Article  CAS  PubMed  Google Scholar 

  17. L. Sawunyama, O.A. Oyewo, N. Seheri, S.A. Onjefu, D.C. Onwudiwe, Metal oxide functionalized ceramic membranes for the removal of pharmaceuticals in wastewater. Surf. Interfaces 38, 102787 (2023). https://doi.org/10.1016/J.SURFIN.2023.102787

    Article  CAS  Google Scholar 

  18. Z.H. Jabbar, S. Esmail Ebrahim, Recent advances in nano-semiconductors photocatalysis for degrading organic contaminants and microbial disinfection in wastewater: a comprehensive review. Environ. Nanotechnol. Monit. Manag. 17, 100666 (2022). https://doi.org/10.1016/J.ENMM.2022.100666

    Article  CAS  Google Scholar 

  19. T. Chellapandi, G. Madhumitha, A short review of recent discoveries in montmorillonite-based photocatalysts for organic dye water pollutant degradation. Environ. Qual. Manag. (2023). https://doi.org/10.1002/TQEM.22021

    Article  Google Scholar 

  20. M. Abdullah, P. John, Z. Ahmad, M.N. Ashiq, S. Manzoor, M.I. Ghori, M.U. Nisa, A.G. Abid, K.Y. Butt, S. Ahmed, Visible-light-driven ZnO/ZnS/MnO2 ternary nanocomposite catalyst: synthesis, characterization and photocatalytic degradation of methylene blue. Appl. Nanosci. 11, 2361–2370 (2021). https://doi.org/10.1007/S13204-021-02008-X/TABLES/1

    Article  CAS  Google Scholar 

  21. F. Moradnia, S. Taghavi Fardood, A. Ramazani, Green synthesis and characterization of NiFe2O4@ZnMn2O4 magnetic nanocomposites: an efficient and reusable spinel nanocatalyst for the synthesis of tetrahydropyrimidine and polyhydroquinoline derivatives under microwave irradiation. Appl. Organomet. Chem. (2023). https://doi.org/10.1002/AOC.7315

    Article  Google Scholar 

  22. T.U. Rahman, H. Roy, A. Fariha, A.Z. Shoronika, M.R. Al-Mamun, S.Z. Islam, M.S. Islam, H.M. Marwani, A. Islam, A.K.D. Alsukaibi, M.M. Rahman, M.R. Awual, Progress in plasma do** semiconductor photocatalysts for efficient pollutant remediation and hydrogen generation. Sep. Purif. Technol. 320, 124141 (2023). https://doi.org/10.1016/J.SEPPUR.2023.124141

    Article  CAS  Google Scholar 

  23. R. Shwetharani, I. Kainthla, S. Dongre, L. D’Souza, R.G. Balakrishna, Recent advances in ecofriendly 2D monoelemental bismuthene as an emerging material for energy, catalysis and biomedical applications. J. Mater. Chem. C 11, 6777–6799 (2023). https://doi.org/10.1039/D3TC00587A

    Article  Google Scholar 

  24. D.A. Vinnik, V.V. Kokovkin, V.V. Volchek, V.E. Zhivulin, P.A. Abramov, N.A. Cherkasova, Z. Sun, M.I. Sayyed, D.I. Tishkevich, A.V. Trukhanov, Electrocatalytic activity of various hexagonal ferrites in OER process. Mater. Chem. Phys. 270, 124818 (2021). https://doi.org/10.1016/J.MATCHEMPHYS.2021.124818

    Article  CAS  Google Scholar 

  25. X. Sun, Y. Chen, Z. Li, Y. Han, Q. Zhou, B. Wang, T. Taniguchi, K. Watanabe, A. Zhao, J. Wang, Y. Liu, J. Xue, Visualizing band profiles of gate-tunable junctions in MoS2/WSe2 heterostructure transistors. ACS Nano 15, 16314–16321 (2021). https://doi.org/10.1021/ACSNANO.1C05491/ASSET/IMAGES/LARGE/NN1C05491_0006.JPEG

    Article  CAS  PubMed  Google Scholar 

  26. G.A. Ermolaev, M.A. El-Sayed, D.I. Yakubovsky, K.V. Voronin, R.I. Romanov, M.K. Tatmyshevskiy, N.V. Doroshina, A.B. Nemtsov, A.A. Voronov, S.M. Novikov, A.M. Markeev, G.I. Tselikov, A.A. Vyshnevyy, A.V. Arsenin, V.S. Volkov, Optical constants and structural properties of epitaxial MoS2 monolayers. Nanomaterials 11, 1411 (2021). https://doi.org/10.3390/NANO11061411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. D.P. Sherstyuk, A.Y. Starikov, V.E. Zhivulin, D.A. Zherebtsov, S.A. Gudkova, N.S. Perov, Y.A. Alekhina, K.A. Astapovich, D.A. Vinnik, A.V. Trukhanov, Effect of Co content on magnetic features and SPIN states IN Ni–Zn spinel ferrites. Ceram. Int. 47, 12163–12169 (2021). https://doi.org/10.1016/J.CERAMINT.2021.01.063

    Article  CAS  Google Scholar 

  28. M. Mostafa, O. Saleh, A.M. Henaish, S.A.A. El-Kaream, R. Ghazy, O.M. Hemeda, A.M. Dorgham, H. Al-Ghamdi, A.H. Almuqrin, M.I. Sayyed, S.V. Trukhanov, E.L. Trukhanova, A.V. Trukhanov, D. Zhou, M.A. Darwish, Structure, morphology and electrical/magnetic properties of Ni–Mg nano-ferrites from a new perspective. Nanomaterials 12, 1045 (2022). https://doi.org/10.3390/NANO12071045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. E.N. Zare, S. Iftekhar, Y. Park, J. Joseph, V. Srivastava, M.A. Khan, P. Makvandi, M. Sillanpaa, R.S. Varma, An overview on non-spherical semiconductors for heterogeneous photocatalytic degradation of organic water contaminants. Chemosphere 280, 130907 (2021). https://doi.org/10.1016/J.CHEMOSPHERE.2021.130907

    Article  CAS  PubMed  Google Scholar 

  30. A. Saravanan, P. Senthil Kumar, S. Jeevanantham, S. Karishma, B. Tajsabreen, P.R. Yaashikaa, B. Reshma, Effective water/wastewater treatment methodologies for toxic pollutants removal: processes and applications towards sustainable development. Chemosphere 280, 130595 (2021). https://doi.org/10.1016/J.CHEMOSPHERE.2021.130595

    Article  CAS  PubMed  Google Scholar 

  31. M.A. Almessiere, Y. Slimani, S. Ali, A. Baykal, R.J. Balasamy, S. Guner, İA. Auwal, A.V. Trukhanov, S.V. Trukhanov, A. Manikandan, Impact of Ga3+ ions on the structure magnetic, and optical features of Co–Ni nanostructured spinel ferrite microspheres. Nanomaterials 12, 2872 (2022). https://doi.org/10.3390/NANO12162872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. M. Zdorovets, A. Kozlovskiy, D. Tishkevich, T. Zubar, A. Trukhanov, The effect of do** of TiO2 thin films with low-energy O2+ ions on increasing the efficiency of hydrogen evolution in photocatalytic reactions of water splitting. J. Mater. Sci. Mater. Electron. 31, 21142–21153 (2020). https://doi.org/10.1007/S10854-020-04626-7/FIGURES/7

    Article  CAS  Google Scholar 

  33. H. Jae Cheon, M. Deb Adhikari, M. Chung, T. Duc Tran, J. Kim, M. Il Kim, H.J. Cheon, M. Chung, T.D. Tran, M.I. Kim, M.D. Adhikari, J. Kim, Magnetic nanoparticles-embedded enzyme-inorganic hybrid nanoflowers with enhanced peroxidase-like activity and substrate channeling for glucose biosensing. Adv. Healthc. Mater. 8, 1801507 (2019). https://doi.org/10.1002/ADHM.201801507

    Article  Google Scholar 

  34. D.A. Vinnik, D.P. Sherstyuk, V.E. Zhivulin, D.E. Zhivulin, A.Y. Starikov, S.A. Gudkova, D.A. Zherebtsov, D.A. Pankratov, Y.A. Alekhina, N.S. Perov, S.V. Trukhanov, E.L. Trukhanova, A.V. Trukhanov, Impact of the Zn–Co content on structural and magnetic characteristics of the Ni spinel ferrites. Ceram. Int. 48, 18124–18133 (2022). https://doi.org/10.1016/J.CERAMINT.2022.03.070

    Article  CAS  Google Scholar 

  35. S.V. Trukhanov, A.V. Trukhanov, V.A. Turchenko, A.V. Trukhanov, E.L. Trukhanova, D.I. Tishkevich, V.M. Ivanov, T.I. Zubar, M. Salem, V.G. Kostishyn, L.V. Panina, D.A. Vinnik, S.A. Gudkova, Polarization origin and iron positions in indium doped barium hexaferrites. Ceram. Int. 44, 290–300 (2018). https://doi.org/10.1016/J.CERAMINT.2017.09.172

    Article  CAS  Google Scholar 

  36. A.V. Trukhanov, V.G. Kostishyn, L.V. Panina, V.V. Korovushkin, V.A. Turchenko, P. Thakur, A. Thakur, Y. Yang, D.A. Vinnik, E.S. Yakovenko, L.Y. Matzui, E.L. Trukhanova, S.V. Trukhanov, Control of electromagnetic properties in substituted M-type hexagonal ferrites. J. Alloys Compd. 754, 247–256 (2018). https://doi.org/10.1016/J.JALLCOM.2018.04.150

    Article  CAS  Google Scholar 

  37. R. Acharya, S. Pati, K. Parida, A review on visible light driven spinel ferrite-g-C3N4 photocatalytic systems with enhanced solar light utilization. J. Mol. Liq. 357, 119105 (2022). https://doi.org/10.1016/J.MOLLIQ.2022.119105

    Article  CAS  Google Scholar 

  38. D.R. Miller, S.A. Akbar, P.A. Morris, Nanoscale metal oxide-based heterojunctions for gas sensing: a review. Sensors Actuators B Chem. 204, 250–272 (2014). https://doi.org/10.1016/J.SNB.2014.07.074

    Article  CAS  Google Scholar 

  39. J.S. Jang, H.G. Kim, J.S. Lee, Heterojunction semiconductors: a strategy to develop efficient photocatalytic materials for visible light water splitting. Catal. Today 185, 270–277 (2012). https://doi.org/10.1016/J.CATTOD.2011.07.008

    Article  CAS  Google Scholar 

  40. M. Abdullah, P. John, M.N. Ashiq, S. Manzoor, M.I. Ghori, M.U. Nisa, A.G. Abid, K.Y. Butt, S. Ahmed, Development of CuO/CuS/MnO2 ternary nanocomposite for visible light-induced photocatalytic degradation of methylene blue. Nanotechnol. Environ. Eng. 8, 63–73 (2023). https://doi.org/10.1007/S41204-022-00266-W/FIGURES/8

    Article  CAS  Google Scholar 

  41. L.T.M. Thy, N.N.K. Tuyen, N.D. Viet, L.M. Huong, N.T. Tinh, T.H. Lin, N.T. Son, D.T.Y. Oanh, M.T. Phong, N.H. Hieu, Nickel ferrite nanoparticles-doped graphene oxide as a heterogeneous Fenton catalyst: synthesis, characterization, and catalytic application. Vietnam J. Chem. 60, 532–539 (2022). https://doi.org/10.1002/VJCH.202200005

    Article  CAS  Google Scholar 

  42. A.V. Trukhanov, V.O. Turchenko, I.A. Bobrikov, S.V. Trukhanov, I.S. Kazakevich, A.M. Balagurov, Crystal structure and magnetic properties of the BaFe12xAlxO19 (x = 0.1–1.2) solid solutions. J. Magn. Magn. Mater. 393, 253–259 (2015). https://doi.org/10.1016/J.JMMM.2015.05.076

    Article  CAS  Google Scholar 

  43. C. Dharmaraja, P.E. Nicholas, P. Ramya, I.J.I. Premkumar, V. Vijayan, N. Senthilkumar, Investigation on photocatalytic activity of ZnS/NiFe2O4 NCs under sunlight irradiation via a novel two-step synthesis approach. Inorg. Chem. Commun. 126, 108481 (2021). https://doi.org/10.1016/J.INOCHE.2021.108481

    Article  CAS  Google Scholar 

  44. B. Janani, A. Syed, A.M. Thomas, S. Al-Rashed, A.M. Elgorban, L.L. Raju, S.S. Khan, A simple approach for the synthesis of bi-functional p–n type ZnO@CuFe2O4 heterojunction nanocomposite for photocatalytic and antimicrobial application. Phys. E Low-Dimens. Syst. Nanostruct. 130, 114664 (2021). https://doi.org/10.1016/J.PHYSE.2021.114664

    Article  CAS  Google Scholar 

  45. K. Atacan, N. Güy, M. Özacar, Design and synthesis of magnetically separable CuFe2O4/MoS2 p–n heterojunction for photocatalytic efficiency of Rhodamine B degradation. Colloid Interface Sci. Commun. 40, 100359 (2021). https://doi.org/10.1016/J.COLCOM.2020.100359

    Article  CAS  Google Scholar 

  46. P.A. Sakhare, S.S. Pawar, T.S. Bhat, S.D. Yadav, G.R. Patil, P.S. Patil, A.D. Sheikh, Magnetically recoverable BiVO4/NiFe2O4 nanocomposite photocatalyst for efficient detoxification of polluted water under collected sunlight. Mater. Res. Bull. 129, 110908 (2020). https://doi.org/10.1016/J.MATERRESBULL.2020.110908

    Article  CAS  Google Scholar 

  47. H. Yan, Y. Lv, T. **ng, S. Zhang, X. Xu, J. Xu, X. Fang, X. Wang, Exploring the structure–reactivity relationship of sn–Cr binary catalysts with XRD extrapolation method: the vital role of surface O2− and acidic sites for toluene combustion. Fuel 339, 127387 (2023). https://doi.org/10.1016/J.FUEL.2022.127387

    Article  CAS  Google Scholar 

  48. S. Phanichphant, A. Nakaruk, K. Chansaenpak, D. Channei, Evaluating the photocatalytic efficiency of the BiVO4/rGO photocatalyst. Sci. Rep. 9, 1–9 (2019). https://doi.org/10.1038/s41598-019-52589-5

    Article  CAS  Google Scholar 

  49. L. Wang, H. Zhang, Y. Wang, C. Qian, Q. Dong, C. Deng, D. Jiang, M. Shu, S. Pan, S. Zhang, Unleashing ultra-fast sodium ion storage mechanisms in interface-engineered monolayer MoS2/C interoverlapped superstructure with robust charge transfer networks. J. Mater. Chem. A 8, 15002–15011 (2020). https://doi.org/10.1039/D0TA04916F

    Article  CAS  Google Scholar 

  50. H.Y. Hafeez, J. Mohammed, C.E. Ndikilar, A.B. Suleiman, R.S. Sa’id, I. Muhammad, Synergistic utilization of magnetic rGO/NiFe2O4-g-C3N4 S-Scheme heterostructure photocatalyst with enhanced charge carrier separation and transfer: a highly stable and robust photocatalyst for efficient solar fuel (hydrogen) generation. Ceram. Int. 49, 5269–5278 (2023). https://doi.org/10.1016/J.CERAMINT.2022.10.045

    Article  CAS  Google Scholar 

  51. H. Chen, W. Liu, Z. Qin, ZnO/ZnFe2O4 nanocomposite as a broad-spectrum photo-Fenton-like photocatalyst with near-infrared activity. Catal. Sci. Technol. 7, 2236–2244 (2017). https://doi.org/10.1039/C7CY00308K

    Article  CAS  Google Scholar 

  52. S. Umrao, S. Abraham, F. Theil, S. Pandey, V. Ciobota, P.K. Shukla, C.J. Rupp, S. Chakraborty, R. Ahuja, J. Popp, B. Dietzek, A. Srivastava, A possible mechanism for the emergence of an additional band gap due to a Ti–O–C bond in the TiO2–graphene hybrid system for enhanced photodegradation of methylene blue under visible light. RSC Adv. 4, 59890–59901 (2014). https://doi.org/10.1039/C4RA10572A

    Article  CAS  Google Scholar 

  53. A. Habibi-Yangjeh, M. Pirhashemi, S. Ghosh, ZnO/ZnBi2O4 nanocomposites with p–n heterojunction as durable visible-light-activated photocatalysts for efficient removal of organic pollutants. J. Alloys Compd. 826, 154229 (2020). https://doi.org/10.1016/J.JALLCOM.2020.154229

    Article  CAS  Google Scholar 

  54. J. Sun, M. Ikezawa, X. Wang, P. **g, H. Li, J. Zhao, Y. Masumoto, Photocarrier recombination dynamics in ternary chalcogenide CuInS2 quantum dots. Phys. Chem. Chem. Phys. 17, 11981–11989 (2015). https://doi.org/10.1039/C5CP00034C

    Article  CAS  PubMed  Google Scholar 

  55. E. Barsotti, S.P. Tan, S. Saraji, M. Piri, J.H. Chen, A review on capillary condensation in nanoporous media: implications for hydrocarbon recovery from tight reservoirs. Fuel 184, 344–361 (2016). https://doi.org/10.1016/J.FUEL.2016.06.123

    Article  CAS  Google Scholar 

  56. B. Shao, Z. Liu, G. Zeng, Z. Wu, Y. Liu, M. Cheng, M. Chen, Y. Liu, W. Zhang, H. Feng, Nitrogen-doped hollow mesoporous carbon spheres modified g-C3N4/Bi2O3 direct dual semiconductor photocatalytic system with enhanced antibiotics degradation under visible light. ACS Sustain. Chem. Eng. 6, 16424–16436 (2018)

    Article  CAS  Google Scholar 

  57. N. Güy, Directional transfer of photocarriers on CdS/g-C3N4 heterojunction modified with Pd as a cocatalyst for synergistically enhanced photocatalytic hydrogen production. Appl. Surf. Sci. 522, 146442 (2020). https://doi.org/10.1016/J.APSUSC.2020.146442

    Article  Google Scholar 

  58. R. Rajendran, S. Vignesh, A. Sasireka, P. Priya, S. Suganthi, V. Raj, J.K. Sundar, M. Srinivasan, M. Shkir, S. AlFaify, Investigation on novel Cu2O modified g-C3N4/ZnO heterostructures for efficient photocatalytic dye degradation performance under visible-light exposure. Colloid Interface Sci. Commun. 44, 100480 (2021). https://doi.org/10.1016/J.COLCOM.2021.100480

    Article  CAS  Google Scholar 

  59. M. Zzaman, J.B. Franklin, A. Kumar, R. Dawn, V.K. Verma, R. Shahid, M.K. Gupta, K. Amemiya, Y. Miura, R. Meena, A. Kandasami, V.R. Singh, Effect of Cr-substitution on vanadium dioxide thin films studied by soft X-ray magnetic circular dichroism. J. Alloys Compd. 918, 165515 (2022). https://doi.org/10.1016/J.JALLCOM.2022.165515

    Article  CAS  Google Scholar 

  60. T.P. Vijayakumar, M.D. Benoy, J. Duraimurugan, G. Suresh Kumar, Hydrothermal synthesis of CuO/g-C3N4 nanosheets for visible-light driven photodegradation of methylene blue. Diam. Relat. Mater. 121, 108735 (2022). https://doi.org/10.1016/J.DIAMOND.2021.108735

    Article  Google Scholar 

  61. T.D. Munusamy, C.S. Yee, M.M.R. Khan, Construction of hybrid g-C3N4/CdO nanocomposite with improved photodegradation activity of RhB dye under visible light irradiation. Adv. Powder Technol. 31, 2921–2931 (2020). https://doi.org/10.1016/J.APT.2020.05.017

    Article  CAS  Google Scholar 

  62. Z. Li, J. Lyu, K. Sun, M. Ge, Construction of magnetic AgBr/Cu/CuFe2O4 Z-scheme photocatalyst with improved photocatalytic performance. Mater. Lett. 214, 257–260 (2018). https://doi.org/10.1016/J.MATLET.2017.12.034

    Article  CAS  Google Scholar 

  63. H. Wang, X. Yuan, H. Wang, X. Chen, Z. Wu, L. Jiang, W. **ong, G. Zeng, Facile synthesis of Sb2S3/ultrathin g-C3N4 sheets heterostructures embedded with g-C3N4 quantum dots with enhanced NIR-light photocatalytic performance. Appl. Catal. B Environ. 193, 36–46 (2016). https://doi.org/10.1016/J.APCATB.2016.03.075

    Article  CAS  Google Scholar 

  64. Y. Zeng, N. Guo, Y. Song, Y. Zhao, H. Li, X. Xu, J. Qiu, H. Yu, Fabrication of Z-scheme magnetic MoS2/CoFe2O4 nanocomposites with highly efficient photocatalytic activity. J. Colloid Interface Sci. 514, 664–674 (2018). https://doi.org/10.1016/J.JCIS.2017.12.079

    Article  CAS  PubMed  Google Scholar 

  65. W. Fu, X. Xu, W. Wang, J. Shen, M. Ye, In-situ growth of NiFe2O4/2D MoS2 p–n heterojunction immobilizing palladium nanoparticles for enhanced visible-light photocatalytic activities. ACS Sustain. Chem. Eng. 6, 8935–8944 (2018). https://doi.org/10.1021/ACSSUSCHEMENG.8B01299/SUPPL_FILE/SC8B01299_SI_001.PDF

    Article  CAS  Google Scholar 

  66. J. Zhao, Z. Ji, X. Shen, H. Zhou, L. Ma, Facile synthesis of WO3 nanorods/g-C3N4 composites with enhanced photocatalytic activity. Ceram. Int. 41, 5600–5606 (2015). https://doi.org/10.1016/J.CERAMINT.2014.12.140

    Article  CAS  Google Scholar 

  67. L. Sarma, M. Thirumal, Coupling of MoSe2 and graphitic carbon nitride (g-C3N4) by facile hydrothermal route for enhanced visible-light photocatalytic properties. Mater. Today Proc. 36, 679–688 (2021). https://doi.org/10.1016/J.MATPR.2020.04.649

    Article  CAS  Google Scholar 

  68. T.C. Bessy, C. Manna, J. Johnson, R.A. Hegazy, M.R. Bindhu, S.S. Florence, Efficient antibacterial activities and photocatalytic degradation of Congo red dye by CuxMg0.8xFe2O4 nanoparticles synthesized by combustion method. J. Mater. Sci. Mater. Electron. 34, 1–18 (2023). https://doi.org/10.1007/S10854-023-09906-6/TABLES/3

    Article  Google Scholar 

Download references

Funding

The authors express their gratitude to Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2024R132), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia. The Deanship of Research and Graduate Studies at King Khalid University is greatly appreciated for funding this work through Large Research Project under grant number RGP2/378/45.

Author information

Authors and Affiliations

Authors

Contributions

Every author has contributed equally.

Corresponding author

Correspondence to Salma Aman.

Ethics declarations

Competing interests

There is no conflict of interest by any form for this manuscript.

Ethical approval

Yes, this article complies with the journal’s ethical guidelines.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alanazi, M.M., Abdelmohsen, S.A.M., Alahmari, S.D. et al. Development of magnetically separable MoS2/NiFe2O4 heterostructure for improved photocatalytic efficiency of malachite green (MG) degradation. J Mater Sci: Mater Electron 35, 1045 (2024). https://doi.org/10.1007/s10854-024-12778-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12778-z

Navigation