Log in

Tuning the physical, structural, optical, and photoluminescence properties of the zinc–aluminum phosphate network utilizing barium and lead ions

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Zinc phosphate glasses with varying concentrations of barium and lead oxides were developed. The P–O bonds exhibited Q3 and Q2 mode vibrations. The glass density (Dexp) increased as the PbO content increased from 2.422 to 3.646 g/cm3 from 0 to 15% mol%. The absorption edge of the studied glasses shifted towards higher wavelengths, indicating structural changes due to the presence of both barium and lead ions. When lead was added to the host network with a ratio of 5% PbO (PbO5), the optical transmittance went up from 0.37 to 0.43 in the visible range. With the increase in PbO content (PbO = 15%; or free BaO), the optical transmittance decreased to 0.18. The optical band gap for free PbO glass decreased from 3.985 to 3.118 eV for free BaO glass, indicating the creation of non-bridging oxygens. The refractive index at 589 nm of the free PbO sample was 2.6, which decreased to 1.96 for the free BaO sample. The photoluminescence of the current glasses depends on the ratio of PbO content, and their intensity increases with increasing PbO content. All luminescence spectra lie in the cyan-blue region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets generated during the current study are available from the corresponding author on reasonable request.

Code availability

Origin Pro software 2023, and Avogadro software.

References

  1. A.M. Abdelghany, A.H. Hammad, J. Mol. Struct. 1081, 342 (2015)

    Article  CAS  Google Scholar 

  2. R.K. Brow, J. Non Cryst. Solids 263–264, 1 (2000)

    Article  Google Scholar 

  3. M.D. Ingram, Curr. Opin. Solid State Mater. Sci. 2, 399 (1997)

    Article  CAS  Google Scholar 

  4. F. Muñoz, L. Montagne, L. Pascual, A. Durán, J. Non Cryst. Solids 355, 2571 (2009)

    Article  Google Scholar 

  5. S. Kumar, P. Vinatier, A. Levasseur, K.J. Rao, J. Solid State Chem. 177, 1723 (2004)

    Article  CAS  Google Scholar 

  6. E. Banoqitah, F. Djouider, E.B. Moustafa, A.H. Hammad, Opt. Quant. Electron. (2022). https://doi.org/10.1007/s11082-022-03792-8

    Article  Google Scholar 

  7. D.A. Rayan, Y.H. Elbashar, J. Opt. 49, 564 (2020)

    Article  Google Scholar 

  8. D.A. Rayan, Y.H. Elbashar, M.M. Rashad, A. El-Korashy, J. Non Cryst. Solids 382, 52 (2013)

    Article  CAS  Google Scholar 

  9. Y.H. Elbashar, R.A. Ibrahem, J. Khallel, S.M. Hussien, A.E. Omran, W.A. Rashidy, M.A. Mohamed, A.S. Abdel-Rahaman, H.H. Hassan, Nonlinear optics. Quant. Optics: Concepts Mod. Optics 54, 231 (2021)

    CAS  Google Scholar 

  10. E.B. Moustafa, E.I. Ghandourah, A.H. Hammad, J. Market. Res. 19, 4905 (2022)

    CAS  Google Scholar 

  11. A.M.A. Mostafa, S.A.M. Issa, M.I. Sayyed, J. Alloys Compd. 708, 294 (2017)

    Article  CAS  Google Scholar 

  12. K.A. Naseer, K. Marimuthu, K.A. Mahmoud, M.I. Sayyed, Radiat. Phys. Chem. 188, 109617 (2021)

    Article  CAS  Google Scholar 

  13. K.A. Matori, M.I. Sayyed, H.A.A. Sidek, M.H.M. Zaid, V.P. Singh, J. Non Cryst. Solids 457, 97 (2017)

    Article  CAS  Google Scholar 

  14. H.O. Tekin, O. Kilicoglu, E. Kavaz, E.E. Altunsoy, M. Almatari, O. Agar, M.I. Sayyed, Results Phys. 12, 1797 (2019)

    Article  Google Scholar 

  15. B.M. Alotaibi, M.I. Sayyed, A. Kumar, M. Alotiby, A. Sharma, H.A. Al-Yousef, N.A.M. Alsaif, Y. Al-Hadeethi, Prog. Nucl. Energy 138, 103798 (2021)

    Article  CAS  Google Scholar 

  16. M.A. Ouis, M.A. Azooz, H.A. ElBatal, J. Non Cryst. Solids 494, 31 (2018)

    Article  CAS  Google Scholar 

  17. J.E. Shelby, Introduction to Glass Science and Technology, second (The Royal Society of Chemistry, Cambridge, 2005)

    Book  Google Scholar 

  18. K.J. Rao, Structural Chemistry of Glasses, 1st edn. (Elsevier, Oxfrord, 2002)

    Google Scholar 

  19. H. Barebita, S. Ferraa, M. Moutataouia, B. Baach, A. Elbadaoui, A. Nimour, T. Guedira, Chem. Phys. Lett. 760, 138031 (2020)

    Article  CAS  Google Scholar 

  20. H. Takebe, Y. Baba, M. Kuwabara, J. Non Cryst. Solids 352, 3088 (2006)

    Article  CAS  Google Scholar 

  21. S.F. Khor, Z.A. Talib, W.M. Daud, H.A.A. Sidek, J. Mater. Sci. 46, 7895 (2011)

    Article  CAS  Google Scholar 

  22. A.E. Marino, S.R. Arrasmith, L.L. Gregg, S.D. Jacobs, G. Chen, Y. Duc, J. Non Cryst. Solids 289, 37 (2001)

    Article  CAS  Google Scholar 

  23. M.B. Tošić, J.D. Nikolić, S.R. Grujić, V.D. Živanović, S.N. Zildžović, S.D. Matijašević, S.V. Ždrale, J. Non Cryst. Solids 362, 185 (2013)

    Article  Google Scholar 

  24. E.C. Onyiriuka, J. Non Cryst. Solids 163, 268 (1993)

    Article  CAS  Google Scholar 

  25. N. Kitamura, K. Fukumi, J. Nakamura, T. Hidaka, H. Hashima, Y. Mayumi, J. Nishii, Mater. Sci. Eng. B 161, 91 (2009)

    Article  CAS  Google Scholar 

  26. X. Li, H. Yang, X. Song, Y. Wu, J. Non Cryst. Solids 379, 208 (2013)

    Article  CAS  Google Scholar 

  27. M.B. Sunil Kumar, B. Eraiah, Mater. Today Proc. 92, 1310 (2023)

    Article  CAS  Google Scholar 

  28. H. Ticha, J. Schwarz, L. Tichy, Mater. Chem. Phys. 237, 121834 (2019)

    Article  CAS  Google Scholar 

  29. Q. Yu, F. Chen, T. Xu, S. Dai, Q. Zhang, J. Non Cryst. Solids 378, 254 (2013)

    Article  CAS  Google Scholar 

  30. C. Ivascu, A. Timar Gabor, O. Cozar, L. Daraban, I. Ardelean, J. Mol. Struct. 993, 249 (2011)

    Article  CAS  Google Scholar 

  31. A.A. Osipov, L.M. Osipova, B. Hruška, A.A. Osipov, M. Liška, Vib. Spectrosc. 103, 102921 (2019)

    Article  CAS  Google Scholar 

  32. P. Stoch, A. Stoch, M. Ciecinska, I. Krakowiak, M. Sitarz, J. Non Cryst. Solids 450, 48 (2016)

    Article  CAS  Google Scholar 

  33. R. Zhang, Z. Wang, Y. Meng, S. Jiao, J. Jia, Y. Min, C. Liu, J. Non Cryst. Solids 573, 121116 (2021)

    Article  CAS  Google Scholar 

  34. Y. Shi, X.X. Han, B.W. Li, Y.X. Chen, M.X. Zhang, Ceram. Int. 46, 9207 (2020)

    Article  CAS  Google Scholar 

  35. A.H. Hammad, E.B. Moustafa, A.R. Wassel, J. Market. Res. 15, 4813 (2021)

    CAS  Google Scholar 

  36. S. Ravangvong, N. Chanthima, Y. Tariwong, J. Kaewkhao, Mater Today Proc 4, 6415 (2017)

    Article  Google Scholar 

  37. J.S. Hassan, M. Hafid, Mater. Res. Bull. 39, 1123 (2004)

    Article  CAS  Google Scholar 

  38. A.H. Hammad, M.S. Abdel-wahab, S. Vattamkandathil, J. Market. Res. 16, 1713 (2022)

    CAS  Google Scholar 

  39. M. Fox, Optical Proeprties of Solids (Oxford University Press, Oxford, 2001)

    Google Scholar 

  40. N. Mott, E. Davis, Electronic Processes in Non-Crystalline Materials, Second (Oxford University Press, Oxford, 1979)

    Google Scholar 

  41. T.S. Moss, G.J. Burrell, B. Ellis, Semiconductor Opto-Electronics, 1st edn. (Butterworth-Heinemann, London, 1973)

    Google Scholar 

  42. E.A. Davis, N.F. Mott, Phil. Mag. 22, 0903 (1970)

    Article  CAS  Google Scholar 

  43. R.M. Ramadan, A.H. Hammad, A.R. Wassel, J. Non Cryst. Solids 568, 120961 (2021)

    Article  CAS  Google Scholar 

  44. S. Sindhu, S. Sanghi, A. Agarwal, V.P. Sonam, N.K. Seth, Phys. B Condens Matter. 365, 65 (2005)

    Article  CAS  Google Scholar 

  45. W.S.W.S. AbuShanab, E.B.E.B. Moustafa, A.H.A.H. Hammad, R.M.M. Ramadan, A.R.A.R. Wassel, J. Mater. Sci. Mater. Electron. 30, 18058 (2019)

    Article  CAS  Google Scholar 

  46. A.H. Hammad, E.B. Moustafa, MSh. Abdel-wahab, W.S. AbuShanab, A.R. Wassel, Optik (Stuttg) 261, 169214 (2022)

    Article  CAS  Google Scholar 

  47. S. Yusub, T. Narendrudu, S. Suresh, D.K. Rao, J. Mol. Struct. 1076, 136 (2014)

    Article  CAS  Google Scholar 

  48. A.H. Hammad, A.R. Wassel, G.O. Rabie, S.Y. Marzouk, Opt. Laser Technol. 161, 109134 (2023)

    Article  CAS  Google Scholar 

  49. J. Solé, L. Bausa, D. Jaque, An Introduction to the Optical Spectroscopy of Inorganic Solids (Wiley, Hoboken, 2005)

    Book  Google Scholar 

  50. A.R. Wassel, I.M. et Radaf, Appl. Phys. A Mater. Sci. Proc. 126, 1 (2020)

    Article  Google Scholar 

  51. A.M. Salem, M.E. El-Ghazzawi, Semicond. Sci. Technol. 19, 236 (2004)

    Article  CAS  Google Scholar 

  52. K. Kaur, K.J. Singh, V. Anand, Nucl. Eng. Des. 285, 31 (2015)

    Article  CAS  Google Scholar 

  53. A.H. Hammad, M.S. Abdel-wahab, Phys. B Condens Matter. 646, 414352 (2022)

    Article  CAS  Google Scholar 

  54. P.S. Shewale, Y.S. Yu, Ceram. Int. 43, 4175 (2017)

    Article  CAS  Google Scholar 

  55. N. Srinatha, P. Raghu, H.M. Mahesh, B. Angadi, J. Alloys Compd. 722, 888 (2017)

    Article  CAS  Google Scholar 

  56. M. Khenfouch, M. Baïtoul, M. Maaza, Opt. Mater. 34, 1320 (2012)

    Article  CAS  Google Scholar 

  57. G. Theophil Anand, D. Renuka, R. Ramesh, L. Anandaraj, S. John Sundaram, G. Ramalingam, C.M. Magdalane, A.K.H. Bashir, M. Maaza, K. Kaviyarasu, Surf. Interfaces 17, 100376 (2019)

    Article  CAS  Google Scholar 

  58. G. Bhagyalekshmi, A.P.N. Shu, D.N. Rajedran, Bull. Mater. Sci. 40, 1429 (2017)

    Article  CAS  Google Scholar 

  59. A.R. Ansari, A.H. Hammad, M.S. Abdel-wahab, M. Shariq, M. Imran, Opt. Quant. Electron. 52, 1 (2020)

    Article  Google Scholar 

  60. H. Naz, R.N. Ali, Q. Liu, S. Yang, B. **ang, J. Colloid Interface Sci. 512, 548 (2018)

    Article  CAS  PubMed  Google Scholar 

  61. I. Ahemen, R.E. Kroon, R. ShaAto, F.B. Dejene, Mater. Res. Express 7, 026202 (2020)

    Article  CAS  Google Scholar 

  62. F.W. Billmeyer, M. Saltzman, Principles of Color Technology, 2nd edn. (Wiley, New York, 1981)

    Google Scholar 

  63. N.S. Prabhu, N. Mazumder, S. Bhardwaj, R.J. Choudhary, U. Caldiño, A.N. Meza-Rocha, M.I. Sayyed, D. Abdullah Aloraini, A.H. Almuqrin, S.D. Kamath, Opt. Laser Technol. 155, 108359 (2022)

    Article  CAS  Google Scholar 

Download references

Funding

This research work was funded by Institutional Fund Projects under Grant No. (IFPIP: 91-135-1443). The authors gratefully acknowledge technical and financial support provided by the Ministry of Education and King Abdulaziz University, DSR, Jeddah, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

Essam Banoqitah, Fathi Djouider, and Majdi Rashed Alnowaimi: resources, conceptualization, writing—original draft, and software. Abdulsalam M. Alhawsawi and Essam B. Moustafa: resources, software, data curation, and formal analysis. Ahmed H. Hammad: writing—review, editing, visualization, and supervision.

Corresponding author

Correspondence to Ahmed H. Hammad.

Ethics declarations

Conflict of interest

The author has no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banoqitah, E., Djouider, F., Alnowaimi, M.R. et al. Tuning the physical, structural, optical, and photoluminescence properties of the zinc–aluminum phosphate network utilizing barium and lead ions. J Mater Sci: Mater Electron 35, 974 (2024). https://doi.org/10.1007/s10854-024-12730-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12730-1

Navigation