Log in

Fast response, gas-permeable flexible humidity sensor based on PEDOT:PSS-GO for respiration monitoring

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

With the development of the internet of things technology, sensors have played an important role in aerospace, industry, agriculture, medical and other fields. Especially in the aspect of wearable respiratory monitoring, real-time monitoring of multiple respiratory physiological parameters through intelligent sensors enable people to achieve early prevention and timely diagnosis of respiratory diseases. However, most of the humidity sensors have the disadvantages of poor permeability, long response time and narrow detection range. Therefore, this paper introduced a flexible humidity sensor with a wide detection range and fast response time for respiratory monitoring. The sensor used PEDOT:PSS-GO composite material as humidity sensitive material. Due to the addition of GO, the sensor had a wide linear detection range of humidity (35–80%RH) and a short response/recovery time (0.53/0.8 s). Moreover, the sensor used the micromesh structure of PI as the substrate, which had better flexibility and permeability and the sensor was easy to attach to complex surfaces such as masks or human skin. Based on these excellent sensing characteristics, the humidity sensor was connected with a miniature wireless communication component for human respiratory detection. The humidity sensor can clearly show the difference between normal and abnormal respiratory signals and this provided a new idea for the intelligent healthcare technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Z. Zhen, Z. Li, X. Zhao, Y. Zhong, L. Zhang, Q. Chen, T. Yang, H. Zhu, Formation of uniform water microdroplets on wrinkled GO for ultrafast humidity sensing. Small 14, 1703848 (2018)

    Article  Google Scholar 

  2. T. Dinh, T. Nguyen, H.P. Phan, N.T. Nguyen, D.V. Dao, J. Bell, Stretchable respiration sensors: advanced designs and multifunctional platforms for wearable physiological monitoring. Biosens. Bioelectron. 166, 112460 (2020)

    Article  CAS  PubMed  Google Scholar 

  3. T. Liang, W. Hou, J. Ji, Y. Huang, Wrinkled reduced GO oxide humidity sensor with fast response/recovery and flexibility for respiratory monitoring. Sens. Actuators, A 350, 114104 (2023)

    Article  CAS  Google Scholar 

  4. K. Thiyagarajan, G.K. Ra**i, D. Maji, Flexible, highly sensitive paper-based screen printed MWCNT/PDMS composite breath sensor for human respiration monitoring. IEEE Sens. J. 21, 13985–13995 (2021)

    Article  CAS  PubMed  Google Scholar 

  5. L. **, Z. Liu, M. Altintas, Y. Zheng, Z. Liu, S. Yao, Y. Fan, Y. Li, Wearable piezoelectric airflow transducers for human respiratory and metabolic monitoring. ACS Sens. 7, 2281–2292 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. S. Zou, L.Q. Tao, G. Wang, C. Zhu, Z. Peng, H. Sun, Y. Li, Y. Wei, T.L. Ren, Humidity-based human-machine interaction system for healthcare applications. ACS Appl. Mater. Interfaces 14, 12606–12616 (2022)

    Article  CAS  PubMed  Google Scholar 

  7. H. Zhang et al., A wearable ultrathin flexible sensor inserted into nasal cavity for precise sleep respiratory monitoring. IEEE Trans. Electron Devices 68, 4090–4097 (2021)

    Article  CAS  Google Scholar 

  8. D. Zhang, M. Wang, M. Tang, X. Song, X. Zhang, Z. Kang, X. Liu, J. Zhang, Q. Xue, Recent progress of diversiform humidity sensors based on versatile nanomaterials and their prospective applications. Nano Res. 16, 11938–11958 (2022)

    Article  Google Scholar 

  9. N. Gao, J. Yu, Q. Tian, J. Shi, M. Zhang, S. Chen, L. Zang, Application of PEDOT:PSS and its composites in electrochemical and electronic chemosensors. Chemosensors 9, 79 (2021)

    Article  CAS  Google Scholar 

  10. S. Taccola, F. Greco, A. Zucca, C. Innocenti, C.D.J. Fernández, G. Campo, C. Sangregorio, B. Mazzolai, V. Mattoli, Characterization of free-standing PEDOT:PSS/iron oxide nanoparticle composite thin films and application as conformable humidity sensors. ACS Appl. Mater. Interfaces 5, 6324–6332 (2013)

    Article  CAS  PubMed  Google Scholar 

  11. O. Nanda, N. Gupta, A. Biradar, K. Saxena, Effect of humidity on the electrical properties of poly (3,4-ethylenedioxythiophene)—poly (styrenesulfonate) and its carbon nanotube composites. ChemistrySelect 6, 1093–1098 (2021)

    Article  CAS  Google Scholar 

  12. A. Beniwal, P. Ganguly, D. K. Neethipathi and R. Dahiya, PEDOT:PSS modified screen printed GO-carbon ink based flexible humidity sensor. 2022 IEEE international conference on flexible and printable sensors and systems (FLEPS). (2022), pp. 1–4

  13. T.G. Kang, J.K. Park, G.H. Yun, H.H. Choi, H.J. Lee, J.G. Yook, A real-time humidity sensor based on a microwave oscillator with conducting polymer PEDOT:PSS film. Sens. Actuators B Chem. 282, 145–151 (2019)

    Article  CAS  Google Scholar 

  14. D.A. Mengistie, P.C. Wang, C.W. Chu, Effect of molecular weight of additives on the conductivity of PEDOT:PSS and efficiency for ITO-free organic solar cells. J. Mater. Chem. A 1, 9907–9915 (2013)

    Article  Google Scholar 

  15. K. Jaruwongrungsee et al., High-sensitivity humidity sensor utilizing PEDOT/PSS printed quartz crystal microbalance. The 8th electrical engineering/electronics, computer, telecommunications and information technology (ECTI) association of Thailand-conference 2011, (2011) pp. 66–69

  16. A. Sappat, A. Wisitsoraat, C. Sriprachuabwong, K. Jaruwongrungsee, T. Lomas, A. Tuantranont, Humidity sensor based on piezoresistive microcantilever with inkjet printed PEDOT/PSS sensing layers. The 8th electrical engineering/electronics, computer, telecommunications and information technology (ECTI) association of Thailand-conference 2011, (2011), pp. 34–37

  17. T.Q. Trung, L.T. Duy, S. Ramasundaram et al., Transparent, stretchable, and rapid-response humidity sensor for body-attachable wearable electronics. Nano Res. 10, 2021–2033 (2017)

    Article  CAS  Google Scholar 

  18. V.I. Popov, I.A. Kotin, N.A. Nebogatikova, S.A. Smagulova, I.V. Antonova, Graphene-PEDOT: PSS humidity sensors for high sensitive, low-cost, highly-reliable, flexible, and printed electronics. Materials 12, 3477 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. C. Zhou et al., Rapid response flexible humidity sensor for respiration monitoring using nano-confined strategy. Nanotechnology 31, 125302 (2020)

    Article  CAS  PubMed  Google Scholar 

  20. B. Li, G. **ao, F. Liu, Y. Qiao, C.M. Li et al., A fexible humidity sensor based on silk fabrics for human respiration monitoring. J. Mater. Chem C 6, 4549–4554 (2018)

    Article  CAS  Google Scholar 

  21. R. Liang, A. Luo, Z. Zhang, Z. Li, C. Han, W. Wu, Research progress of graphene-based flexible humidity sensor. Sensors 20, 5601 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. R.J. Zhang, P. Bo, Y. Yan, Flexible printed humidity sensor based on poly (3, 4-ethylenedioxythiophene)/reduced graphene oxide/Au nanoparticles with high performance. Compos. Sci. Technol. 168, 118–125 (2018)

    Article  Google Scholar 

  23. I.B. Olenych, O.I. Aksimentyeva, L.S. Monastyrskii, Y.Y. Horbenko, L.I. Yarytska, Sensory properties of hybrid composites based on poly(3,4-ethylenedioxythiophene)-porous silicon-carbon nanotubes. Nanosc. Res. Lett. 10, 1–6 (2015)

    Article  CAS  Google Scholar 

  24. G.U. Siddiqui, M. Sajid, J. Ali, S.W. Kim, Y.H. Doh, K.H. Choi, Wide range highly sensitive relative humidity sensor based on series combination of MoS2 and PEDOT:PSS sensors array. Sens. Actuators, B Chem. 266, 354–363 (2018)

    Article  Google Scholar 

  25. S.H. Lee, H. Park, W. Son, H.H. Choi, J.H. Kim, Novel solution-processable, dedoped semiconductors for application in thermoelectric devices. J. Mater. Chem. A 2, 13380 (2014)

    Article  CAS  Google Scholar 

  26. F. Soltani-Kordshuli, F. Zahibi, M. Eslamian, GO-doped PEDOT:PSS nanocomposite thin films fabricated by conventional and substrate vibration-assisted spray coating (SVASC). Int. J. Eng. Sci. 19, 1216–1223 (2016)

    Google Scholar 

  27. A. Moazzeni, S. Hamedi, Z. Kordrostami, Switching characteristic of fabricated nonvolatile bipolar resistive switching memory (ReRAM) using PEDOT: PSS/GO. Solid-State Electron. 188, 108208 (2022)

    Article  CAS  Google Scholar 

  28. K. Krishnamoorthy, M. Veerapandian, K. Yun, S.J. Kim, The chemical and structural analysis of graphene oxide with different degrees of oxidation. Carbon 53, 38–49 (2013)

    Article  CAS  Google Scholar 

  29. P.W. Sayyad, S.S. Khan, N.N. Ingle, G.A. Bodkhe, T. Al-Gahouari, M.M. Mahadik, S.M. Shirsat, M.D. Shirsat, Chemiresistive SO2 sensor: graphene oxide (GO) anchoredpoly (3,4-ethylenedioxythiophene):poly(4styrenesulfonate) (PEDOT:PSS). Appl. Phys. A 126, 857 (2020)

    Article  CAS  Google Scholar 

  30. D. Yoo, J. Kim, J.H. Kim, Direct synthesis of highly conductive poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS)/graphene composites and their applications in energy harvesting systems. Nano Res. 7, 717–730 (2014)

    Article  CAS  Google Scholar 

  31. X.S. Yao, Y. Cui, A PEDOT:PSS functionalized capacitive sensor for humidity. Measurement 160, 107782 (2020)

    Article  Google Scholar 

  32. M. Javed, M. Sajid, H.M.Z. Yousaf, G. Hassan, H. Mahmood, Facile and low cost temperature compensated humidity sensor and signal conditioning system. IEEE Sens. J. 21, 14906–14914 (2021)

    Article  CAS  Google Scholar 

  33. K. Sharma, N. Alam, S.S. Islam, Investigation of morphological dependence on the sensing performance of porous anodic alumina based humidity sensor at low RH. AIP Conf. Proc. 2276, 020024 (2020)

    Article  Google Scholar 

  34. S. Kumar, K.K. Raina, T. Islam, Anodic aluminium oxide based humidity sensor for online moisture monitoring of power transformer. Sens. Actuators, B Chem. 329, 128908 (2021)

    Article  CAS  Google Scholar 

  35. X. Wang et al., A vertically aligned multiwall carbon nanotube-based humidity sensor with fast response, low hysteresis and high repeatability. IEEE Sens. Lett. 5, 1–4 (2021)

    Google Scholar 

  36. A.S. Pawbake, R.G. Waykar, D.J. Late, S.R. Jadkar, Highly transparent wafer-scale synthesis of crystalline WS2 nanoparticle thin film for photodetector and humidity-sensing applications. ACS Appl. Mater. Interfaces 8, 3359–3365 (2016)

    Article  CAS  PubMed  Google Scholar 

  37. K. Sahoo, B. Mohanty, A. Biswas, J. Nayak, Role of hexamethylenetetramine in ZnO-cellulose nanocomposite enabled UV and humidity sensor. Mater. Sci. Semicond. Process. 105, 104699 (2020)

    Article  CAS  Google Scholar 

  38. Y.M. Huo, M.M. Bu, Z.T. Ma, J.Y. Sun, Y.H. Yan, K.H. **u, Z.Y. Wang, N. Hu, Y.F. Li, Flexible, non-contact and multifunctional humidity sensors based on two-dimensional phytic acid doped co-metal organic frameworks nanosheets. J. Colloid Interface Sci. 607, 2010–2018 (2022)

    Article  CAS  PubMed  Google Scholar 

  39. P. Li, S. Yu, H. Zhang, Preparation and performance analysis of Ag/ZnO humidity sensor. Sensors 21, 857 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. X.Y. Li, X.D. Chen, X.P. Chen, X. Ding, X. Zhao, High-sensitive humidity sensor based on graphene oxide with evenly dispersed multiwalled carbon nanotubes. Mater. Chem. Phys. 207, 135–140 (2018)

    Article  CAS  Google Scholar 

  41. D.Z. Zhang, X.S. Song, Z. Wang, H.N. Chen, Ultra-highly sensitive humidity sensing by polydopamine/graphene oxide nanostructure on quartz crystal microbalance. Appl. Surf. Sci. 538, 147816 (2021)

    Article  CAS  Google Scholar 

  42. Y.P. Su, C.P. Li, M.G. Li, H.J. Li, S. Xu, L.R. Qian, B.H. Yang, Surface acoustic wave humidity sensor based on three-dimensional architecture graphene/PVA/SiO2 and its application for respiration monitoring. Sens. Actuators, B Chem. 308, 127693 (2020)

    Article  CAS  Google Scholar 

  43. W. Ahmad, B. Jabbar, I. Ahmad, B. Mohamed Jan, M.M. Stylianakis, G. Kenanakis, R. Ikram, Highly sensitive humidity sensors based on polyethylene oxide/CuO/multi walled carbon nanotubes composite nanofibers. Mater. (Basel) 14, 1037 (2021)

    Article  CAS  Google Scholar 

  44. H.S. Dehsari, E.K. Shalamzari, J.N. Gavgani, F.A. Taromi, S. Ghanbary, Efficient preparation of ultralarge graphene oxide using a PEDOT:PSS/GO composite layer as hole transport layer in polymer-based optoelectronic devices. RSC Adv. 4, 55067–55076 (2014)

    Article  CAS  Google Scholar 

  45. J. Ouyang, Q. Xu, C.W. Chu, Y. Yang, G. Li, J. Shinar, On the mechanism of conductivity enhancement in poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) film through solvent treatment. Polymer 45, 8443–8450 (2004)

    Article  CAS  Google Scholar 

  46. W.A. Daoud, J.H. **n, Y.S. Szeto, Polyethylenedioxythiophene coatings for humidity, temperature and strain sensing polyamide fibers. Sens. Actuators, B Chem. 109, 329–333 (2005)

    Article  CAS  Google Scholar 

  47. G. Wang, Y. Zhang, H. Yang, W. Wang, Y.Z. Dai, L.G. Niu, C. Lv, H. **a, T. Liu, Fast-response humidity sensor based on laser printing for respiration monitoring. RSC Adv. 10, 8910–8916 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. M. Kuş, S. Okur, Electrical characterization of PEDOT:PSS beyond humidity saturation. Sens. Actuators B Chem. 143, 177–181 (2009)

    Article  Google Scholar 

  49. A. Hasani, H.S. Dehsari, J.N. Gavgani, E.K. Shalamzari, A. Salehi, F. Afshar Taromi, M. Mahyari, Sensor for volatile organic compounds using an interdigitated gold electrode modified with a nano composite made from poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) and ultra-large GO oxide. Microchim. Acta 182, 1551–1559 (2015)

    Article  CAS  Google Scholar 

  50. R.P. Goutham, R.V. Sandhya, A. Kanwat, J. Jang, Enhanced organic photovoltaic properties via structural modifications in PEDOT:PSS due to graphene oxide do**. Mater. Res. Bull. 74, 346–352 (2016)

    Article  Google Scholar 

  51. M. Seifi, S. Hamedi, Z. Kordrostami, Fabrication of a high-sensitive wearable temperature sensor with an improved response time based on PEDOT:PSS/rGO on a flexible kapton substrate. J. Mater. Sci. Mater. Electron. 33, 6954–6968 (2022)

    Article  CAS  Google Scholar 

  52. A. Hasani, H.S. Dehsari, M.A. Lafmejani, A. Salehi, F.A. Taromi, K. Asadi, S.Y. Kim, Ammonia-sensing using a composite of graphene oxide and conducting polymer. Phys. Status Solid. Rapid Res. Lett. 12, 1800037 (2018)

    Article  Google Scholar 

  53. A. Beniwal, D.A. John, R. Dahiya, PEDOT:PSS-based disposable humidity sensor for skin moisture monitoring. IEEE Sens. Lett. 7, 1–4 (2023)

    Google Scholar 

  54. Z. Duan, Y. Jiang, H. Tai, Recent advances in humidity sensors for human body related humidity detection. J. Mater. Chem. 9, 14963–14980 (2021)

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No.22304020), the 2022 Provincial Natural Science Foundation Plan (No. 2022-MS-151).

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

RG: validation, formal analysis, investigation, methodology, data curation, writing—original draft, visualization. BS: methodology. XL: methodology, investigation. BY: methodology, writing—review and editing, visualization, and funding acquisition.

Corresponding authors

Correspondence to Bin Shi or Bing Yin.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 122 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ge, R., Shi, B., Liu, X. et al. Fast response, gas-permeable flexible humidity sensor based on PEDOT:PSS-GO for respiration monitoring. J Mater Sci: Mater Electron 35, 738 (2024). https://doi.org/10.1007/s10854-024-12540-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12540-5

Navigation