Log in

Soft magnetic properties, microstructure, and growth mechanism of FeSiAl soft magnetic powder cores fabricated via hexafluozirconic acid passivation

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In order to develop FeSiAl soft magnetic powder cores (SMPCs) with excellent soft magnetic properties, FeSiAl powder passivated by hexafluorozirconic acid (H2ZrF6) was sucessfully prepared and the effect of different concentrations of H2ZrF6 on the effective permeability (μe) and core loss (Pcv) of FeSiAl SMPCs were systematically studied. H2ZrF6 (0.1 wt% of FeSiAl powder) passivation successfully optimized the soft magnetic properties, when the μe reached 94, the Pcv was only 180 mW/cm3 at 0.05 T and 100 kHz. SEM, XRD, FTIR, XPS, and TEM were used to investigate the microstructure and growth mechanism of the coating layer. The FeSiAl powder was passivated by H2ZrF6 to form a composite coating layer with dominating Fe2O3, Al2O3, SiO2, ZrF4 and a small amount of AlF3, ZrO2, while the AlF3 and ZrO2 content increased significantly after annealing. In addition, this study effectively improved the high frequency characteristics of FeSiAl SMPCs and analyzed the generation of coating layer, providing a feasible way for the insulation treatment of soft magnetic powder cores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The data used to support the findings of this study are available from the corresponding author upon request.

References

  1. E.A. Périgo, B. Weidenfeller, P. Kollár et al., Past, present, and future of soft magnetic composites. Appl. Phys. Rev. 5, 031301 (2018). https://doi.org/10.1063/1.5027045

    Article  CAS  Google Scholar 

  2. B. Sai Ram, A.K. Paul, S.V. Kulkarni, Soft magnetic materials and their applications in transformers. J. Magn. Magn. Mater. 537, 168210 (2021). https://doi.org/10.1016/j.jmmm.2021.168210

    Article  CAS  Google Scholar 

  3. W.C. Li, H.W. Cai, Y. Kang et al., High permeability and low loss bioinspired soft magnetic composites with nacre-like structure for high frequency applications. Acta Mater. 167, 267–274 (2019). https://doi.org/10.1016/j.actamat.2019.01.035

    Article  CAS  Google Scholar 

  4. O. Gutfleisch, M.A. Willard, E. Brück et al., Magnetic materials and devices for the 21st century: stronger, lighter, and more energy efficient. Adv. Mater. 23, 821–842 (2011). https://doi.org/10.1002/adma.201002180

    Article  CAS  PubMed  Google Scholar 

  5. H. Shokrollahi, K. Janghorban, Soft magnetic composite materials (SMCs). J. Mater. Process. Technol. 189, 1–12 (2007). https://doi.org/10.1016/j.jmatprotec.2007.02.034

    Article  CAS  Google Scholar 

  6. J.M. Silveyra, E. Ferrara, D.L. Huber et al., Soft magnetic materials for a sustainable and electrified world. Science 362, aa0195 (2018). https://doi.org/10.1126/science.aao0195

    Article  CAS  Google Scholar 

  7. I. Hemmati, H.R. Madaah Hosseini, A. Kianvash, The correlations between processing parameters and magnetic properties of an iron–resin soft magnetic composite. J. Magn. Magn. Mater. 305, 147–151 (2006). https://doi.org/10.1016/j.jmmm.2005.12.004

    Article  CAS  Google Scholar 

  8. M. Strečková, J. Füzer, L. Kobera et al., A comprehensive study of soft magnetic materials based on FeSi spheres and polymeric resin modified by silica nanorods. Mater. Chem. Phys. 147, 649–660 (2014). https://doi.org/10.1016/j.matchemphys.2014.06.004

    Article  CAS  Google Scholar 

  9. Y.X. Pang, S.N.B. Hodgson, B. Weglinski et al., Investigations into sol-gel silica and silica hybrid coatings for dielectromagnetic soft magnetic composite applications. J. Mater. Sci. 41, 5926–5936 (2006). https://doi.org/10.1007/s10853-006-0360-9

    Article  CAS  Google Scholar 

  10. H.Y. Yu, X.X. Lai, X.C. Zhong et al., Optimization of sol-gel prepared SiO2 coating and FeSiCr@SiO2 soft magnetic composites based on critical ammonia concentration. Mater. Chem. Phys. 303, 127765 (2023). https://doi.org/10.1016/j.matchemphys.2023.127765

    Article  CAS  Google Scholar 

  11. K.J. Geng, Y.Y. **e, L. Yan et al., Fe-Si/ZrO2 composites with core-shell structure and excellent magnetic properties prepared by mechanical milling and spark plasma sintering. J. Alloys Compd. 718, 53–62 (2017). https://doi.org/10.1016/j.jallcom.2017.05.114

    Article  CAS  Google Scholar 

  12. K.J. Geng, Y.Y. **e, L.L. Xu et al., Structure and magnetic properties of ZrO2-coated Fe powders and Fe/ZrO2 soft magnetic composites. Adv. Powder Technol. 28, 2015–2022 (2017). https://doi.org/10.1016/j.apt.2017.04.029

    Article  CAS  Google Scholar 

  13. R.R. Bai, Z.H. Zhu, H. Zhao et al., The percolation effect and optimization of soft magnetic properties of FeSiAl magnetic powder cores. J. Magn. Magn. Mater. 433, 285–291 (2017). https://doi.org/10.1016/j.jmmm.2017.03.016

    Article  CAS  Google Scholar 

  14. S. Wu, A.Z. Sun, W.H. Xu et al., Iron-based soft magnetic composites with Mn–Zn ferrite nanoparticles coating obtained by sol–gel method. J. Magn. Magn. Mater. 324, 3899–3905 (2012). https://doi.org/10.1016/j.jmmm.2012.06.042

    Article  CAS  Google Scholar 

  15. J. Li, X.L. Peng, Y.T. Yang et al., Preparation and characterization of MnZn/FeSiAl soft magnetic composites. J. Magn. Magn. Mater. 426, 132–136 (2017). https://doi.org/10.1016/j.jmmm.2016.11.068

    Article  CAS  Google Scholar 

  16. H.J. Liu, H.L. Su, W.B. Geng et al., Effect of particle size distribution on the magnetic properties of Fe-Si-Al powder core. J. Supercond. Novel Magn. 29, 463–468 (2015). https://doi.org/10.1007/s10948-015-3282-4

    Article  CAS  Google Scholar 

  17. D. Liu, C. Wu, M. Yan et al., Correlating the microstructure, growth mechanism and magnetic properties of FeSiAl soft magnetic composites fabricated via HNO3 oxidation. Acta Mater. 146, 294–303 (2018). https://doi.org/10.1016/j.actamat.2018.01.001

    Article  CAS  Google Scholar 

  18. J.S. Pinheiro, G. Regio, H.R.P. Cardoso et al., Influence of concentration and pH of hexafluorozirconic acid on corrosion resistance of anodized AA7075-T6. Mater. Res. 22, e20190048 (2019). https://doi.org/10.1590/1980-5373-mr-2019-0048

    Article  CAS  Google Scholar 

  19. O. Lunder, C. Simensen, Y. Yu et al., Formation and characterisation of Ti–Zr based conversion layers on AA6060 aluminium. Surf. Coat. Technol. 184, 278–290 (2004). https://doi.org/10.1016/j.surfcoat.2003.11.003

    Article  CAS  Google Scholar 

  20. V.B. Moreira, A. Meneguzzi, E. Jiménez-Piqué et al., Aluminum protection by using green zirconium oxide layer and organic coating: an efficient and adherent dual system. Sustainability 13, 9688 (2021). https://doi.org/10.3390/su13179688

    Article  CAS  Google Scholar 

  21. P. Kollár, Z. Birčáková, J. Füzer et al., Power loss separation in Fe-based composite materials. J. Magn. Magn. Mater. 327, 146–150 (2013). https://doi.org/10.1016/j.jmmm.2012.09.055

    Article  CAS  Google Scholar 

  22. A.H. Taghvaei, H. Shokrollahi, K. Janghorban et al., Eddy current and total power loss separation in the iron-phosphate-polyepoxy soft magnetic composites. Mater. Des. 30, 3989–3995 (2009). https://doi.org/10.1016/j.matdes.2009.05.026

    Article  CAS  Google Scholar 

  23. H. Shokrollahi, K. Janghorban, Effect of warm compaction on the magnetic and electrical properties of Fe-based soft magnetic composites. J. Magn. Magn. Mater. 313, 182–186 (2007). https://doi.org/10.1016/j.jmmm.2006.12.022

    Article  CAS  Google Scholar 

  24. D. Liu, C. Wu, M. Yan, Investigation on sol–gel Al2O3 and hybrid phosphate-alumina insulation coatings for FeSiAl soft magnetic composites. J. Mater. Sci. 50, 6559–6566 (2015). https://doi.org/10.1007/s10853-015-9189-4

    Article  CAS  Google Scholar 

  25. H.B. Sun, G.H. Zhou, Z.L. Guo et al., Efficient synthesis of TiO2-coated layer for Fe-based soft magnetic composites and their regulation mechanism analysis on magnetic properties. J. Mater. Sci. 33, 13956–13967 (2022). https://doi.org/10.1007/s10854-022-08326-2

    Article  CAS  Google Scholar 

  26. J.L. Ni, S.J. Zhu, S.J. Feng et al., Investigation on magnetic properties of FeSiAl/SrFe12O19 composites. J. Mater. Sci. 32, 16956–16960 (2021). https://doi.org/10.1007/s10854-021-06259-w

    Article  CAS  Google Scholar 

  27. M. Yan, Q.M. Chen, D. Liu et al., Sodium nitrate passivation as a novel insulation technology for soft magnetic composites. Engineering 20, 134–142 (2023). https://doi.org/10.1016/j.eng.2022.01.016

    Article  CAS  Google Scholar 

  28. C. Wu, X.W. Gao, G.L. Zhao et al., Two growth mechanisms in one-step fabrication of the oxide matrix for FeSiAl soft magnetic composites. J. Magn. Magn. Mater. 452, 114–119 (2018). https://doi.org/10.1016/j.jmmm.2017.12.032

    Article  CAS  Google Scholar 

  29. S.L. **, X.J. Wang, K.C. Tome et al., Hydrogen release: In-situ calorimetry studies of NaBH4+2MgH2 doped by ZrF4. Int. J. Hydrog. Energy 46, 922–929 (2021). https://doi.org/10.1016/j.ijhydene.2020.09.237

    Article  CAS  Google Scholar 

  30. Z.Y. Wu, L. Kang, X.W. Liao et al., Realizing high-resistivity and low-loss Fe–Si–Al based soft magnetic powder cores through interfacial chemistry regulation. Ceram. Int. 49, 19870–19878 (2023). https://doi.org/10.1016/j.ceramint.2023.03.106

    Article  CAS  Google Scholar 

  31. M.K. Zakaryan, S.L. Kharatyan, A. Aprahamian et al., Combustion in the ZrF4-Mg-Si and ZrF4-Al-Si systems for preparation of zirconium silicides. Combust. Flame 232, 111514 (2021). https://doi.org/10.1016/j.combustflame.2021.111514

    Article  CAS  Google Scholar 

  32. B.X. Chen, J.P. Peng, Y.W. Wang et al., Penetration behavior of electrolyte into graphite cathode in NaF−KF−LiF−AlF3 system with low cryolite ratios. Trans. Nonferr. Metal Soc. 32, 2727–2735 (2022). https://doi.org/10.1016/s1003-6326(22)65979-x

    Article  CAS  Google Scholar 

  33. Y. Wang, The uniform Si-O coating on cotton fibers by an atmospheric pressure plasma treatment. J. Macromol. Sci. Part B 50, 1739–1746 (2011). https://doi.org/10.1080/00222348.2010.549051

    Article  CAS  Google Scholar 

  34. J. Sung Lee, H. Soo Kim, J. Su Lee et al., Synthesis of α-Al2O3 at mild temperatures by controlling aluminum precursor, pH, and ethylenediamine chelating additive. Ceram. Int. 38, 6685–6691 (2012). https://doi.org/10.1016/j.ceramint.2012.05.057

    Article  CAS  Google Scholar 

  35. M. Ramachandran, R. Subadevi, W.R. Liu et al., Facile synthesis and characterization of ZrO2 nanoparticles via modified co-precipitation method. J. Nanosci. Nanotechnol. 18, 368–373 (2018). https://doi.org/10.1166/jnn.2018.14562

    Article  CAS  PubMed  Google Scholar 

  36. M. Gotić, G. Dražić, S. Musić, Hydrothermal synthesis of α-Fe2O3 nanorings with the help of divalent metal cations, Mn2+, Cu2+, Zn2+ and Ni2+. J. Mol. Struct. 993, 167–176 (2011). https://doi.org/10.1016/j.molstruc.2010.12.063

    Article  CAS  Google Scholar 

  37. C.V.A. Duke, J.M. Miller, J.H. Clark et al., 19F MAS NMR and FTIR analysis of the adsorption of alkall metal fluorides onto alumina. J. Mol. Catal. 62, 233–242 (1990). https://doi.org/10.1016/0304-5102(90)85216-5

    Article  CAS  Google Scholar 

  38. X. Zuo, W.F. Li, S.L. Mu et al., Investigation of composition and structure for a novel Ti–Zr chemical conversion coating on 6063 aluminum alloy. Prog. Org. Coat. 87, 61–68 (2015). https://doi.org/10.1016/j.porgcoat.2015.05.008

    Article  CAS  Google Scholar 

  39. K.J. Ewing, B.M. Wright, J. Jaganathan et al., Distribution of oxide in a bed of thermally decomposed ZrF4 - H2O and its effect on ZrF4 sublimation. J. Am. Ceram. Soc. 75, 1918–1923 (1992). https://doi.org/10.1111/j.1151-2916.1992.tb07217.x

    Article  CAS  Google Scholar 

  40. Z.G. Luo, X.A. Fan, W.T. Hu et al., Properties of Fe2SiO4/SiO2 coated Fe-Si soft magnetic composites prepared by sintering Fe-6.5wt%Si/Fe3O4 composite particles. J. Magn. Magn. Mater. 499, 166278 (2020). https://doi.org/10.1016/j.jmmm.2019.166278

    Article  CAS  Google Scholar 

  41. T. Fujii, F.M.F. de Groot, G.A. Sawatzky et al., In situ XPS analysis of various iron oxide films grown by NO2-assisted molecular-beam epitaxy. Phys. Rev. B 59, 3195–3202 (1999). https://doi.org/10.1103/PhysRevB.59.3195

    Article  CAS  Google Scholar 

  42. Y.X. Liu, J.W. Li, Y. Sun et al., Effect of annealing temperature on magnetic properties and corrosion resistance of Fe75.8Si12B8Nb2.6Cu0.6P1 alloy. J. Mater. Res. Technol. 15, 3880–3894 (2021). https://doi.org/10.1016/j.jmrt.2021.10.050

    Article  CAS  Google Scholar 

  43. L.K. Wu, J.J. **a, H.Z. Cao et al., Improving the high-temperature oxidation resistance of TiAl alloy by anodizing in methanol/NaF solution. Oxid. Met. 90, 617–631 (2018). https://doi.org/10.1007/s11085-018-9858-1

    Article  CAS  Google Scholar 

  44. A. Sarfraz, R. Posner, M.M. Lange et al., Role of intermetallics and copper in the deposition of ZrO2 conversion coatings on AA6014. J. Electrochem. Soc. 161, C509–C516 (2014). https://doi.org/10.1149/2.0121412jes

    Article  CAS  Google Scholar 

  45. V. Cristaudo, K. Baert, P. Laha et al., A combined XPS/ToF-SIMS approach for the 3D compositional characterization of Zr-based conversion of galvanized steel. Appl. Surf. Sci. 562, 150166 (2021). https://doi.org/10.1016/j.apsusc.2021.150166

    Article  CAS  Google Scholar 

  46. B.V. Crist, XPS in industry-Problems with binding energies in journals and binding energy databases. J. Electron Spectrosc. Relat. Phenom. 231, 75–87 (2019). https://doi.org/10.1016/j.elspec.2018.02.005

    Article  CAS  Google Scholar 

  47. L. Zhang, B.M. Wang, D.Y. Ying et al., Effect of the impurity ions on the crystallization of urea phosphate. Int. J. Chem. Reactor Eng. 17, 20180275 (2019). https://doi.org/10.1515/ijcre-2018-0275

    Article  CAS  Google Scholar 

  48. B. Sarangi, A. Sarangi, H.S. Ray, Kinetics of aluminothermic reduction of MnO2 and Fe2O3: a thermoanalytical investigation. ISIJ Int. 36, 1135–1141 (1996). https://doi.org/10.2355/isi**ternational.36.1135

    Article  CAS  Google Scholar 

  49. A.M. Cano, A.E. Marquardt, J.W. DuMont et al., Effect of HF pressure on thermal Al2O3 atomic layer etch rates and Al2O3 fluorination. J. Phys. Chem. C 123, 10346–10355 (2019). https://doi.org/10.1021/acs.jpcc.9b00124

    Article  CAS  Google Scholar 

  50. A.M. Cano, J.L. Partridge, S.M. George, Thermal atomic layer etching of Al2O3 using sequential HF and BCl3 exposures: evidence for combined ligand-exchange and conversion mechanisms. Chem. Mater. 34, 6440–6449 (2022). https://doi.org/10.1021/acs.chemmater.2c01120

    Article  CAS  Google Scholar 

  51. Gl. Zhao, C. Wu, M. Yan, Enhanced magnetic properties of Fe soft magnetic composites by surface oxidation. J. Magn. Magn. Mater. 399, 51–57 (2016). https://doi.org/10.1016/j.jmmm.2015.09.054

    Article  CAS  Google Scholar 

  52. D. Gräf, M. Grundner, R. Schulz, Reaction of water with hydrofluoric acid treated silicon(111) and (100) surfaces. J. Vac. Sci. Technol. A 7, 808–813 (1989). https://doi.org/10.1116/1.575845

    Article  Google Scholar 

  53. J.H. Nordlien, J.C. Walmsley, H. Osterberg et al., Formation of a zirconium-titanium based conversion layer on AA 6060 aluminium. Surf. Coat. Technol. 153, 72–78 (2002). https://doi.org/10.1016/s0257-8972(01)01663-2

    Article  CAS  Google Scholar 

  54. W.C. Li, Z.J. Wang, Y. Ying et al., In-situ formation of Fe3O4 and ZrO2 coated Fe-based soft magnetic composites by hydrothermal method. Ceram. Int. 45, 3864–3870 (2019). https://doi.org/10.1016/j.ceramint.2018.11.058

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by Youth Innovation Promotion Association CAS (Grant No. 2021294), the S&T Innovation 2025 Major Special Program (Grant No. 2021Z038), K.C. Wong Magna Fund in Ningbo University, and the “Pioneer and Leading Goose” R&D Program of Zhejiang (Grant No. 2023C01138).

Author information

Authors and Affiliations

Authors

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Lu, H., Dong, Y. et al. Soft magnetic properties, microstructure, and growth mechanism of FeSiAl soft magnetic powder cores fabricated via hexafluozirconic acid passivation. J Mater Sci: Mater Electron 35, 747 (2024). https://doi.org/10.1007/s10854-024-12481-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12481-z

Navigation