Log in

Investigation of structural, dielectric, transport and optical characteristics of Sm/Ce modified bismuth titanate ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The present study reports the synthesis (mixed oxide reaction route) and characterization (structural, dielectric and impedance spectroscopic) behaviour of cerium-modified bismuth samarium titanate (Bi3SmTi3O12) compounds. The room temperature X-ray diffractogram suggests orthorhombic symmetry. Micro-structures of the samples with cerium incorporation exhibit typical lamellar structures and overlapped grain boundaries with grain sizes in the range of 0.7–1.15 µm. Dielectric anomalies pertaining to heterogeneous electrical relaxations, Maxwell–Wagner polarization effects and phase transition are also discussed. The compound’s ac electrical conductivity response’s disagreement to universal Jonscher power law is understood from the jump relaxation and concept of mismatch and relaxation models. Reduction in activation energy values with increase in frequency also confirms decrease in barrier height. The potential for thermistor applications and the negative temperature coefficient of resistance behaviour of the sample is critically examined from impedance and temperature resistance study. Optical band-gap studies reveal a reduction in energy band gap from 2.91 to 2.29 eV. Further, the Nyquist plot of the compounds also corroborates the non-Debye nature of relaxation in the samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data availability

The data sets supporting the results reported in the manuscript can be available from the corresponding author on reasonable request.

References

  1. S.V. Zubkov, I.A. Parinov, Y.A. Kuprina, The structural and dielectric properties of Bi3−xNdxTi1.5W0.5O9 (x = 0.25, 0.5, 0.75, 1.0). Electronics 11(2), 277 (2022)

    Article  CAS  Google Scholar 

  2. Q. Wu, X. Chen, L. Zhao, Y. Zhao, Y. Zhou, S. Zhao, The relaxor properties and energy storage performance of Aurivillius compounds with different number of perovskite-like layers. J. Alloy. Compd. 911, 165081 (2022)

    Article  CAS  Google Scholar 

  3. R.C. Oliveira, L.S. Cavalcante, J.C. Sczancoski, E.C. Aguiar, J.W.M. Espinosa, J.A. Varela, E. Longo, Synthesis and photoluminescence behavior of Bi4Ti3O12 powders obtained by the complex polymerization method. J. Alloy. Compd. 478(1–2), 661–670 (2009)

    Article  CAS  Google Scholar 

  4. M. Afqir, A. Tachafine, D. Fasquelle, M. Elaatmani, J.C. Carru, A. Zegzouti, Structural and dielectric properties of SrBi2−xCexNb2O9 (0 ≤ x ≤ 0.35) ceramics. J. Electron. Mater. 47, 5793–5799 (2018)

    Article  CAS  Google Scholar 

  5. T. Rentschler, Substitution of lead into the bismuth oxide layers of the n = 2-and n = 3-aurtvillius phases. Mater. Res. Bullet. 32(3), 351–369 (1997)

    Article  CAS  Google Scholar 

  6. V. Shrivastava, A.K. Jha, R.G. Mendiratta, Structural distortion and phase transition studies of Aurivillius type Sr1− xPbxBi2Nb2O9 ferroelectric ceramics. Solid State Commun. 133(2), 125–129 (2005)

    Article  CAS  Google Scholar 

  7. A.Z. Simões, C.S. Riccardi, L.S. Cavalcante, A.H.M. Gonzalez, E. Longo, J.A. Varela, Size effects of polycrystalline lanthanum modified Bi4Ti3O12 thin films. Mater. Res. Bull. 43(1), 158–167 (2008)

    Article  Google Scholar 

  8. J.F. Dorrian, R.E. Newnham, D.K. Smith, M.I. Kay, Crystal structure of Bi4Ti3O12. Ferroelectrics 3(1), 17–27 (1972)

    Article  Google Scholar 

  9. H.S. Shulman, D. Damjanovic, N. Setter, Niobium do** and dielectric anomalies in bismuth titanate. J. Am. Ceram. Soc. 83(3), 528–532 (2000)

    Article  CAS  Google Scholar 

  10. R.W. Wolfe, R.E. Newnham, Rare Earth bismuth titanates. J. Electrochem. Soc. 116(6), 832 (1969)

    Article  CAS  Google Scholar 

  11. L. Zhang, S. Zhao, H. Yu, L. Zheng, G. Li, Q. Yin, Microstructure and electrical properties of tungsten-doped bismuth titanate ceramics. Jpn. J. Appl. Phys. 43(11R), 7613 (2004)

    Article  CAS  Google Scholar 

  12. H.S. Shulman, M. Testorf, D. Damjanovic, N. Setter, Microstructure, electrical conductivity, and piezoelectric properties of bismuth titanate. J. Am. Ceram. Soc. 79(12), 3124–3128 (1996)

    Article  CAS  Google Scholar 

  13. M. Reddyprakash, S.K. Rout, A. Satapathy, T.P. Sinha, S.M. Sariful, Dielectric and ferroelectric properties of samarium substituted BaBi4Ti4O15 Aurivillius oxides. Ceram. Int. 42(7), 8798–8803 (2016)

    Article  CAS  Google Scholar 

  14. Zednicek T, Sedlakova V, Tofel P, 1.2. Low Curie temperature materials, the next generation of high energy density class II ceramic dielectrics?

  15. L.F. Zhu, B.P. Zhang, X.K. Zhao, L. Zhao, F.Z. Yao, X. Han, J.F. Li, Phase transition and high piezoelectricity in (Ba, Ca)(Ti1xSnx)O3 lead-free ceramics. Appl. Phys. Lett. (2013). https://doi.org/10.1063/1.4818732

    Article  Google Scholar 

  16. Y. Yao, C. Zhou, D. Lv, D. Wang, H. Wu, Y. Yang, X. Ren, Large piezoelectricity and dielectric permittivity in BaTiO3xBaSnO3 system: The role of phase coexisting. Europhys. Lett. 98(2), 27008 (2012)

    Article  Google Scholar 

  17. W. Li, Z. Xu, R. Chu, P. Fu, G. Zang, Enhanced ferroelectric properties in (Ba1−xCax)(Ti0.94Sn0.0) O3 lead-free ceramics. J. Eur. Ceram. Soc. 32(3), 517–520 (2012)

    Article  CAS  Google Scholar 

  18. K. Babooram, D.K. Chin, Z.G. Ye, Ferroelectric Bi4Ti3O12 and Bi4–xLaxTi3O12 ceramics prepared by a new sol–gel route. J. Electroceram. 21, 43–48 (2008)

    Article  CAS  Google Scholar 

  19. Y. Chen, S.X. **e, H.M. Wang, Q. Chen, Q.Y. Wang, J.G. Zhu, Z.W. Guan, Dielectric abnormality and ferroelectric asymmetry in W/Cr co-doped Bi4Ti3O12 ceramics based on the effect of defectdipoles. J. Alloy. Compd. 696, 746–753 (2017)

    Article  CAS  Google Scholar 

  20. X. Du, W. Huang, S. He, T.S. Kumar, A. Hao, N. Qin, D. Bao, Dielectric, ferroelectric, and photoluminescent properties of Sm-doped Bi4Ti3O12 thin films synthesized by sol–gel method. Ceram. Int. 44(16), 19402–19407 (2018)

    Article  CAS  Google Scholar 

  21. X. Du, W. Huang, S.K. Thatikonda, N. Qin, D. Bao, Improved ferroelectric and dielectric properties of Sm, La co-doped Bi4Ti3O12 multifunctional thin films with orange–red emission. J. Mater. Sci.: Mater. Electron. 30, 13158–13166 (2019)

    CAS  Google Scholar 

  22. A.Z. Simões, R.F. Pianno, C.S. Riccardi, L.S. Cavalcante, E. Longo, J.A. Varela, Dielectric properties of pure and lanthanum modified bismuth titanate thin films. J. Alloy. Compd. 454(1–2), 66–71 (2008)

    Article  Google Scholar 

  23. H. Li, L. Zhang, Oxygen vacancy induced selective silver deposition on the 001 facets of BiOCl single-crystalline nanosheets for enhanced Cr (VI) and sodium pentachlorophenate removal under visible light. Nanoscale 6(14), 7805–7810 (2014)

    Article  CAS  PubMed  Google Scholar 

  24. T. Hashimoto, H. Moriwake, Oxygen vacancy formation energy and its effect on spontaneous polarization in Bi4Ti3O12: a first-principles theoretical study. Phys. Rev. B 78(9), 092106 (2008)

    Article  Google Scholar 

  25. D.J. Singh, S.S.A. Seo, H.N. Lee, Optical properties of ferroelectric Bi4Ti3O12. Phys. Rev. B 82(18), 180103 (2010)

    Article  Google Scholar 

  26. Y. Zhang, X. Xu, Machine learning the central magnetic flux density of superconducting solenoids. Mater. Technol. 37(4), 272–279 (2022)

    Article  Google Scholar 

  27. Y. Zhang, X. Xu, Machine learning modelling of lattice constants for half-Heusler alloys. AIP Adv. (2020). https://doi.org/10.1063/5.0002448

    Article  PubMed  PubMed Central  Google Scholar 

  28. Y. Zhang, X. Xu, Machine learning lattice constants for cubic perovskite A22+BB′O6 compounds. CrystEngComm 22(38), 6385–6397 (2020)

    Article  CAS  Google Scholar 

  29. M. Kong, Y. Li, X. Chen, T. Tian, P. Fang, F. Zheng, X. Zhao, Tuning the relative concentration ratio of bulk defects to surface defects in TiO2 nanocrystals leads to high photocatalytic efficiency. J. Am. Chem. Soc. 133(41), 16414–16417 (2011)

    Article  CAS  PubMed  Google Scholar 

  30. C. Murugesan, G.J.R.A. Chandrasekaran, Impact of Gd3+ substitution on the structural, magnetic and electrical properties of cobalt ferrite nanoparticles. RSC Adv. 5(90), 73714–73725 (2015)

    Article  CAS  Google Scholar 

  31. J.A. Bartkowska, J. Dercz, D. Michalik, The origin of the ferroelectricity in the bismuth titanate Bi4Ti3O12 with perovskite-like layered structure. Solid State Phenom. 226, 17–22 (2015)

    Article  Google Scholar 

  32. J. Hou, R.V. Kumar, Y. Qu, D. Krsmanovic, B-site do** effect on electrical properties of Bi4Ti3−2xNbxTaxO12 ceramics. Scripta Mater. 61(6), 664–667 (2009)

    Article  CAS  Google Scholar 

  33. S. Sharma, M.P. Cruz, J.M. Siqueiros et al., Investigation of electrical, magneto-dielectric and transport properties of multiferroic (1–x) BiFeO3–(x) BaSr0.7Ti0.3O3 solid solutions. J Mater Sci: Mater Electron 30, 7447–7459 (2019)

    CAS  Google Scholar 

  34. V.K. Seth, W.A. Schulze, Grain-oriented fabrication of bismuth titanate ceramics and its electrical properties. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 36(1), 41–49 (1989)

    Article  CAS  PubMed  Google Scholar 

  35. O. Subohi, L. Shastri, G.S. Kumar, M.M. Malik, R. Kurchania, Study of Maxwell–Wagner (M–W) relaxation behavior and hysteresis observed in bismuth titanate layered structure obtained by solution combustion synthesis using dextrose as fuel. Mater. Res. Bull. 49, 651–656 (2014)

    Article  CAS  Google Scholar 

  36. N.V. Prasad, K. Srinivas, A.R. James, Impedance spectroscopic studies on SmBi3Ti3O12 ceramics. Ferroelectrics 282(1), 217–228 (2003)

    Article  CAS  Google Scholar 

  37. J.C. Dyre, T.B. Schrøder, Universality of ac conduction in disordered solids. Rev. Mod. Phys. 72(3), 873 (2000)

    Article  Google Scholar 

  38. B. Choudhury, P. Chetri, A. Choudhury, Oxygen defects and formation of Ce3+ affecting the photocatalytic performance of CeO2 nanoparticles. RSC Adv. 4(9), 4663–4671 (2014)

    Article  CAS  Google Scholar 

  39. D. Yin, F. Zhao, L. Zhang, X. Zhang, Y. Liu, T. Zhang, Z. Chen, Greatly enhanced photocatalytic activity of semiconductor CeO2 by integrating with upconversion nanocrystals and graphene. RSC Adv. 6(105), 103795–103802 (2016)

    Article  CAS  Google Scholar 

  40. Y. Zhang, X. Xu, Machine learning optical band gaps of doped-ZnO films. Optik 217, 164808 (2020)

    Article  CAS  Google Scholar 

  41. Y. Zhang, X. Xu, Machine learning band gaps of doped-TiO2 photocatalysts from structural and morphological parameters. ACS Omega 5(25), 15344–15352 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Y. Zhang, X. **aojie, Modeling oxygen ionic conductivities of ABO3 Perovskites through machine learning. Chem. Phys. 558, 111511 (2022)

    Article  CAS  Google Scholar 

  43. Y. Zhang, X. Xu, Machine learning properties of electrolyte additives: a focus on redox potentials. Ind. Eng. Chem. Res. 60(1), 343–354 (2020)

    Article  Google Scholar 

  44. K. Funke, D. Wilmer, Concept of mismatch and relaxation derived from conductivity spectra of solid electrolytes. Solid State Ionics 136, 1329–1333 (2000)

    Article  Google Scholar 

  45. K. Funke, R.D. Banhatti, S. Brückner, C. Cramer, C. Krieger, A. Mandanici, I. Ross, Ionic motion in materials with disordered structures: conductivity spectra and the concept of mismatch and relaxation. Phys. Chem. Chem. Phys. 4(14), 3155–3167 (2002)

    Article  CAS  Google Scholar 

  46. M.B. Bechir, M.H. Dhaou, Study of charge transfer mechanism and dielectric relaxation of all-inorganic Perovskite CsSnCl3. RSC Adv. 11(35), 21767–21780 (2021)

    Article  PubMed  PubMed Central  Google Scholar 

  47. G.N. Bhargavi, A. Khare, T. Badapanda, M.S. Anwar, N. Brahme, Electrical characterizations of BaZr0.05Ti0.95O3 perovskite ceramic by impedance spectroscopy, electric modulus and conductivity. J. Mater. Sci.: Mater. Electron. 28, 16956–16964 (2017)

    CAS  Google Scholar 

  48. J.C. Dyre, The random free-energy barrier model for ac conduction in disordered solids. J. Appl. Phys. 64(5), 2456–2468 (1988)

    Article  Google Scholar 

  49. A. Feteira, Negative temperature coefficient resistance (NTCR) ceramic thermistors: an industrial perspective. J. Am. Ceram. Soc. 92(5), 967–983 (2009)

    Article  CAS  Google Scholar 

  50. L.N. Patro, K. Bharathi Kamala, N. Ravi Chandra Raju, Microstructural and ionic transport studies of hydrothermally synthesized lanthanum fluoride nanoparticles. AIP Adv. 10(1063/1), 4904949 (2014)

    Google Scholar 

  51. M.S. Abouzari, F. Berkemeier, G. Schmitz, D. Wilmer, On the physical interpretation of constant phase elements. Solid State Ionics 180(14–16), 922–927 (2009)

    Article  Google Scholar 

  52. M.T. Anderson, J.T. Vaughey, K.R. Poeppelmeier, Structural similarities among oxygen-deficient perovskites. Chem. Mater. 5(2), 151–165 (1993)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

One of the authors Rashmi Rekha Sahoo would like to acknowledge DST, INSPIRE for the financial support.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection was done by Rashmi Rekha Sahoo and analysis were performed by Rashmi Rekha Sahoo and R.N.P Choudhary. The first draft of the manuscript was written by Rashmi Rekha Sahoo and R.N.P Choudhary all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Rashmi Rekha Sahoo.

Ethics declarations

Competing interest

The authors declare that they have no known competing interests that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahoo, R.R., Choudhary, R.N.P. Investigation of structural, dielectric, transport and optical characteristics of Sm/Ce modified bismuth titanate ceramics. J Mater Sci: Mater Electron 35, 737 (2024). https://doi.org/10.1007/s10854-024-12429-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12429-3

Navigation