Log in

Green synthesis of rGO nanosheets wrapped on Ni-doped ZnO nanocomposite using P. dodecandra L’Herit (P.d) leaves extract and their photocatalytic and antioxidant performance

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The current work focussed on the synthesis and characterization of Ni-doped ZnO/rGO heterostructures and evaluation of its photoactivity under UV light irradiation. The nanocomposite photocatalysts were prepared via green synthesis using P.dodecandra L’Herit (P.d) leaves extract. The X-ray diffraction analysis revealed that Ni and rGO were successfully incorporated into the wurtzite structure of ZnO nanocomposites. FESEM images showed a uniformed particle with the average size of about 10–20 nm for all samples. Later, the photocatalytic degradation of Rhodamine B (RhB) and methylene blue (MB) using the produced materials under visible light irradiation was examined. These results revealed that Ni-doped ZnO/rGO nanocomposites exhibited better photocatalytic performance than ZnO. However, Ni-doped ZnO/rGO composite achieved the highest degradation efficiency for RhB dye approximately 98% under UV light. Moreover, the composite exhibited higher rate constant (0.0156 min−1) and long-term stability. Altogether, the unique properties such as electron accepting and transporting properties of rGO in the nanocomposite enhanced photocatalytic activity by minimizing the charge carrier’s recombination rate. Overall, Ni-doped ZnO/rGO showed better results in antioxidant as well as photocatalytic activity against the pure ZnO NPs. Facile and low-temperature synthesis process with excellent degradation performance demonstrated that the Ni-doped ZnO/rGO nanocomposites have a great potential for wastewater treatment applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author, upon reasonable request.

References

  1. G. Yan, L. Zhan, J. Peng, K. Jiang, Z. Jiang, S. Jiang, Preparation of a flower-like BiOCl/K-C3N4 p-n heterojunction and photodegradation formaldehyde and dyes. J. Electron. Mater. 51, 6228–6237 (2022)

    Article  CAS  ADS  Google Scholar 

  2. G. Yan, K. Wang, Z. Jiang, K. Jiang, J. Peng, Xu. Jian, Flower-like ZnO/BiOI p–n heterojunction composites for enhanced photodegradation of formaldehyde and dyes. J. Mater. Sci. Mater. Electron. 33, 23064–23074 (2022)

    Article  CAS  Google Scholar 

  3. G. Yan, Gu. Yefan, P. Qin, W. Deng, M. Lin, C. Huang, Y. Ning, Hu. Hongliang, L. **ao, Z-scheme K-C3N4/Ag/Ag3PMo12O40 heterojunction with improved visible light photodegradation of formaldehyde. Appl. Surf. Sci. 574, 151693 (2022)

    Article  CAS  Google Scholar 

  4. M. Kheirabadi, M. Samadi, E. Asadian, Y. Zhou, C. Dong, J. Zhang, A. Moshfegh, Well-designed Ag/ZnO/3D graphene structure for dye removal: adsorption, photocatalysis and physical separation capabilities. J. Coll. Interface Sci. 537, 66–78 (2019)

    Article  CAS  ADS  Google Scholar 

  5. M. Jothibas, C. Manoharan, S.J. Jeyakumar, P. Praveen, I.K. Punithavathy, J.P. Richard, Synthesis and enhanced photocatalytic property of Ni doped ZnS nanoparticles. Sol. Energy 159, 434–443 (2018)

    Article  CAS  ADS  Google Scholar 

  6. M. Coto, S.C. Troughton, J. Duan, R.V. Kumar, T.W. Clyne, Development and assessment of photo-catalytic membranes for water purification using solar radiation. Appl. Surf. Sci. 433, 101–107 (2018)

    Article  CAS  ADS  Google Scholar 

  7. O. Baytar, O. Sahin, H. Kilicvuran, S. Horoz, Synthesis, structural, optical and photocatalytic properties of Fe-alloyed CdZnS nanoparticles. J. Mater. Sci. Mater. Electron. 29, 4564–4568 (2018)

    Article  CAS  Google Scholar 

  8. C. Hang, L. Yang, R. **, F. Wang, G. Li, Xu. Yanbin, Porous CeB 6 nanostructure: a step towards rapid adsorption of methylene blue. J. Aust. Ceram. Soc. 54, 423–428 (2018)

    Article  CAS  Google Scholar 

  9. S. Ahmed, M. Ahmad, B.L. Swami, S. Ikram, A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: a green expertise. J. Adv. Res. 7, 17–28 (2016)

    Article  CAS  PubMed  Google Scholar 

  10. S.A. El-Hakam, F.T.A.L. Shorifi, R.S. Salama, S. Gamal, W.A. El-Yazeed, A.A. Ibrahim, A.I. Ahmed, Application of nanostructured mesoporous silica/ bismuth vanadate composite catalysts for the degradation of methylene blue and brilliant green. J. Mat. Res. Technol. 18, 1963–1976 (2022)

    Article  CAS  Google Scholar 

  11. Y.K. Su, S.M. Peng, L.W. Ji, C.Z. Wu, W.B. Cheng, C.H. Liu, Ultraviolet ZnO nanorod photosensors. Langmuir 26, 603–606 (2010)

    Article  CAS  PubMed  Google Scholar 

  12. K. Mukae, K. Tsuda, I. Nagasawa, Capacitance-vs-voltage characteristics of ZnO varistors. J. Appl. Phys. 50, 4475–4476 (1979)

    Article  CAS  ADS  Google Scholar 

  13. W. Zhong Lin, Zinc oxide nanostructures: growth, properties and applications. J. Phys. Condens. Matter 16, R829 (2004)

    Article  Google Scholar 

  14. L. Yi, Y. Hou, H. Zhao, D. He, Z. Xu, Y. Wang, X. Xu, The photo- and electro-luminescence properties of ZnO: Zn thin film. Displays 21, 147–149 (2000)

    Article  CAS  Google Scholar 

  15. E. Forgacs, T. Cserháti, G. Oros, Removal of synthetic dyes from wastewaters: a review. Environ. Int. 30, 953–971 (2004)

    Article  CAS  PubMed  Google Scholar 

  16. Ü. Özgür, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Doğan, V. Avrutin, S.J. Cho, H. Morkoç, A comprehensive review of ZnO materials and devices. J. Appl. Phys. 98, 041301 (2005)

    Article  ADS  Google Scholar 

  17. P. Sutradhar, M. Saha, D. Maiti, Microwave synthesis of copper oxide nanoparticles using tea leaf and coffee powder extracts and its antibacterial activity. J. Nanostruct. Chem. 4, 86–91 (2014)

    Article  Google Scholar 

  18. P. Mohanpuria, N.K. Rana, S.K. Yadav, Biosynthesis of nanoparticles: technological concepts and future applications. J. Nanopart. Res. 10, 507–517 (2008)

    Article  CAS  ADS  Google Scholar 

  19. M. Pattanayak, P.L. Nayak, Ecofriendly green synthesis of iron nanoparticles from various plants and spices extract. Int. J. Plant Anim. Environ. Sci. 3, 68–78 (2013)

    CAS  Google Scholar 

  20. G. Hoag, J. Collins, J. Holcomb, J. Hoag, M. Nadagoudab, R. Varma, Degradation of bromothymol blue by ‘greener’ nano-scale zero-valent iron synthesized using tea polyphenols. J. Mater. Chem. 19, 8671–8677 (2009)

    Article  CAS  Google Scholar 

  21. Q. Sun, X. Cia, J. Li, M. Zheng, Z. Chen, C.P. Yu, Green synthesis of silver nanoparticles using tea leaf extract and evaluation of their stability and antibacterial activity. Coll. Surf. A 444, 226–231 (2014)

    Article  CAS  Google Scholar 

  22. N.A. Begum, S. Mondal, S. Basu, R.A. Laskar, D. Mandal, Biogenic synthesis of Au and Ag nanoparticles using aqueous solutions of Black Tea leaf extracts. Coll. Surf. B 80, 113–118 (2009)

    Article  Google Scholar 

  23. M.N. Nadagouda, R.S. Varma, Green synthesis of silver and palladium nanoparticles at room temperature using coffee and tea extract. Green Chem. 10, 589–862 (2008)

    Article  Google Scholar 

  24. S.H. Amirnordin, H.A. Rahman, H.Z. Abdullah, H. Taib, Effect of zeta potential of stanum oxide (SnO2) on electrophoretic deposition (EPD) on porous alumina. Adv. Mater. Res. Trans. Tech. Publ. 795, 334–337 (2013)

    Google Scholar 

  25. K. Huszla, K. Wysokowski, A. Zgoła-Grześkowiak, M. Staszak, M. Janczarek, T. Jesionowski, B. Wyrwas, UV-light photocatalytic degradation of non-ionic surfactants using ZnO nanoparticles. Int. J. Environ. Sci. Technol. 19, 173–188 (2022)

    Article  CAS  Google Scholar 

  26. S. Thakur et al., Structural and optical study of nickel doped ZnO nanoparticles and thin films for dye sensitized solar cell applications. J. Optoelectron. Adv. Mater. 15(7–8), 989–994 (2013)

    Google Scholar 

  27. S. Gayathri, O.S.N. Ghosh, S. Sathiskumar, S. Sudhakara, J. Jayarmudu, S.S. Ray, A.K. Viswanath, Investigation of physicochemical properties of Ag doped ZnO nanoparticles prepared by chemical route. Res. Sci. 1, 8–13 (2015)

    Google Scholar 

  28. D.I. Son, B.W. Kwon, D.H. Park, W. Seo, Y. Yi, B. Angadi, C. Lee, W.K. Choi, Emissive ZnO–graphene quantum dots for white-light-emitting diodes. Nat. Nanotechnol. 7, 465–471 (2012)

    Article  CAS  PubMed  ADS  Google Scholar 

  29. S. Siamak, P. Haghshenas, A. Nemati, R. Simchi, C.-U. Kim, Photocatalytic and photoluminescence properties of ZnO/graphene quasi core-shell nanoparticles. Ceram. Int. 45, 8945–8961 (2019)

    Article  Google Scholar 

  30. R. BoopathiRaja, M. Parthibavarman, Hetero-structure arrays of MnCo2O4 nanoflakes@nanowires grown on Ni foam: design, fabrication and applications in electrochemical energy storage. J. Alloy. Compd. 811, 152084 (2019)

    Article  CAS  Google Scholar 

  31. R. BoopathiRaja, M. Parthibavarman, A. Nishara Begum, Hydrothermal induced novel CuCo2O4 electrode for high performance supercapacitor applications. Vacuum 165, 96–104 (2019)

    Article  CAS  ADS  Google Scholar 

  32. R. BoopathiRaja, M. Parthibavarman, Desert rose like heterostructure of NiCo2O4/NF@PPy composite has high stability and excellent electrochemical performance for asymmetric super capacitor application. Electrochim. Acta 346, 136270 (2020)

    Article  CAS  Google Scholar 

  33. R. BoopathiRaja, M. Parthibavarman, Reagent induced formation of NiCo2O4 with different morphologies with large surface area for high performance asymmetric supercapacitors. Chem. Phys. Lett. 755, 137809 (2020)

    Article  CAS  Google Scholar 

  34. G. Park, L. Bartolome, K.G. Lee, S.J. Lee, D.H. Kim, T.J. Park, One-step sonochemical synthesis of a graphene oxide-manganese oxide nanocomposite for catalytic glycolysis of poly (ethylene terephthalate). Nanoscale 4, 3879–3885 (2012)

    Article  CAS  PubMed  ADS  Google Scholar 

  35. K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti, J. Rouquerol et al., Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (recommendations 1984). Pure Appl. Chem. 57, 603–619 (1985)

    Article  CAS  Google Scholar 

  36. Yi. Lin, R. Hong, H. Chen, D. Zhang, X. **jia, Green synthesis of ZnO-GO composites for the photocatalytic degradation of methylene blue. J. Nanomater. 2020, 4147357 (2020)

    Article  Google Scholar 

  37. P. Molaei, M. Cheraghizade, R. Yousefi, Impact of rGO on photocatalytic performance of Cd-doped ZnO nanostructures synthesized via a simple aqueous co-precipitation route. Mater. Res. Express. 6, 025051 (2019)

    Article  ADS  Google Scholar 

  38. H.A. Rafaie, N.S. Ismail, S.H.N.I.D. Dasiano, M.F. Kasim, N.I.T. Ramli, Z.A.M. Hir, M.H. Mamat, Constructing Ni doped ZnO/GO heterostrutures for enhanced sunlight-triggered degradation of methylene blue dye, Malaysian. J. Anal. Sci. 26, 520–531 (2022)

    Google Scholar 

  39. Z. Sun, H. Zhang, YuSu. Xuehua Shen, H. Liu, Yu. Hailin, Preparation of highly efficient Ni-doped layered perovskite grafted graphene oxide NixSr1-xTiO3-RGO heterojunction photocatalyst with enhanced visible-light photocatalytic activity for MB degradation. Mater. Chem. Phys. 273, 125119 (2021)

    Article  CAS  Google Scholar 

  40. A.R. Malik, S. Nasir, F. Shaheen, M. Khalid, Y. Iqbal, A. Faisal et al., Green synthesis of RGO-ZnO mediated Ocimum basilicum leaves extract nanocomposite for antioxidant, antibacterial, antidiabetic and photocatalytic activity. J. Saudi Chem. Soc. 28, 101438 (2022)

    Article  Google Scholar 

  41. S.J. Lee, T. Begildayeva, H.J. Jung, R. Koutavarapu, Y. Yiseul, M. Choi, M.Y. Choi, Plasmonic ZnO/Au/g-C3N4 nanocomposites as solar light active photocatalysts for degradation of organic contaminants in wastewater. Chemosphere 263, 128262 (2021)

    Article  CAS  PubMed  ADS  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

SRB study conceptualization and writing (original draft) the manuscript and AJA data curation, formal analysis, and writing (review & editing).

Corresponding author

Correspondence to S. R. Bavaji.

Ethics declarations

Conflict of interest

The authors declare that there are no conflict of interest regarding the research work reported in this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bavaji, S.R., Ahamed, A.J. Green synthesis of rGO nanosheets wrapped on Ni-doped ZnO nanocomposite using P. dodecandra L’Herit (P.d) leaves extract and their photocatalytic and antioxidant performance. J Mater Sci: Mater Electron 35, 147 (2024). https://doi.org/10.1007/s10854-024-11956-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-11956-3

Navigation