Log in

Role of bismuth in the mechanical and corrosion properties of Cu/Sn-3.0Ag-0.5Cu/Cu solder lap joints

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Cu/Sn-3.0Ag-0.5Cu-xBi/Cu solder lap joints were prepared using Sn-3.0Ag-0.5Cu (SAC305) solder paste doped with 0, 1 wt%, 3 wt% and 7 wt% Bi powder, respectively. The different samples were immersed in 3.5 wt% NaCl solution for a maximum of 28 days, and the corrosion products were SnO, SnO2 and Sn3O(OH)2Cl2. The samples were observed and tested at different periods of the study, and the shear strength, corrosion morphology, XRD phase diagrams and weight changes of the joints were compared with those of the joints with different do** concentrations. The results showed that the shear strength of SAC305 solder joints increased and then decreased with the increase of Bi do** concentration. Although the 7 wt% Bi doped lap joint had the lowest shear strength and was still the lowest at the end of the 28 day immersion corrosion tests, the decrease in shear strength with increasing immersion time was the slowest compared to the joints with other Bi do** concentrations. The results suggest that high concentrations of Bi do** in SAC305 solder joints have a corrosion-blocking effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The research data cannot be shared at this time, because it is part of the current research work.

References

  1. L.N. Ramanathan, J.W. Jang, J.K. Lin et al., Solid-state annealing behavior of two high-Pb solders, 95Pb5Sn and 90Pb10Sn, on Cu under bump metallurgy. J. Electron. Mater. 34, L43–L46 (2005)

    Article  ADS  CAS  Google Scholar 

  2. X. Bi, X. Hu, Q. Li, Effect of Co addition into Ni film on shear strength of solder/Ni/Cu system: experimental and theoretical investigations. Mater. Sci. Eng. A 788, 139589 (2020)

    Article  CAS  Google Scholar 

  3. L.C. Tsao, Evolution of nano-Ag3Sn particle formation on Cu–Sn intermetallic compounds of Sn3.5Ag0.5Cu composite solder/Cu during soldering. J. Alloys Compd. 509(5), 2326–2333 (2011)

    Article  CAS  Google Scholar 

  4. M. Turner, D. Callaghan, Will IT in the UK become greener in 2006?—the impact of the new UK regulations on the use of hazardous substances in electrical and electronic equipment. Comput. Law Secur. Rev. 22(2), 172–175 (2006)

    Article  Google Scholar 

  5. Z.J. Yang, S.M. Yang, H.S. Yu et al., IMC and creep behavior in lead-free solder joints of Sn-Ag and Sn-Ag-Cu alloy system by SP method. Int. J. Automot. Technol. 15, 1137–1142 (2014)

    Article  Google Scholar 

  6. J.G. Lee, K.N. Subramanian, Effect of dwell times on thermomechanical fatigue behavior of Sn-Ag-based solder joints. J. Electron. Mater. 32, 523–530 (2003)

    Article  ADS  CAS  Google Scholar 

  7. Y. Wang, J. Han, L. Ma et al., Electromigration behaviors of Cu reinforced Sn-3.5 Ag composite solder joints. J. Electron. Mater. 45, 6095–6101 (2016)

    Article  ADS  CAS  Google Scholar 

  8. T. Takahashi, S. Komatsu, H. Nishikawa et al., Improvement of high-temperature performance of Zn-Sn solder joint. J. Electron. Mater. 39, 1241–1247 (2010)

    Article  ADS  CAS  Google Scholar 

  9. W. Wang, M. Osterman, D. Das et al., Solder joint reliability of SnAgCu solder refinished components under temperature cycling test. IEEE Trans. Compon. Packag. Manufact. Technol. 1(5), 798–808 (2011)

    Article  CAS  Google Scholar 

  10. J.W. Yoon, S.B. Jung, Reliability studies of Sn–9Zn/Cu solder joints with aging treatment. J. Alloy. Compd. 407(1–2), 141–149 (2006)

    Article  CAS  Google Scholar 

  11. X. Hu, T. Xu, L.M. Keer et al., Microstructure evolution and shear fracture behavior of aged Sn3Ag0.5Cu/Cu solder joints. Mater. Sci. Eng. A 673, 167–177 (2016)

    Article  CAS  Google Scholar 

  12. X. Hu, T. Xu, L.M. Keer et al., Shear strength and fracture behavior of reflowed Sn3.0Ag0.5Cu/Cu solder joints under various strain rates. J. Alloys Compd. 690, 720–729 (2017)

    Article  CAS  Google Scholar 

  13. F. Rosalbino, G. Zanicchi, R. Carlini et al., Electrochemical corrosion behaviour of Sn–Ag–Cu (SAC) eutectic alloy in a chloride containing environment. Mater. Corros. 63(6), 492–496 (2012)

    Article  CAS  Google Scholar 

  14. M. Wang, C. Qiao, X. Jiang et al., Microstructure induced galvanic corrosion evolution of SAC305 solder alloys in simulated marine atmosphere. J. Mater. Sci. Technol. 51, 40–53 (2020)

    Article  CAS  Google Scholar 

  15. P.L. Liu, J.K. Shang, Interfacial embrittlement by bismuth segregation in copper/tin-bismuth Pb-free solder interconnect. J. Mater. Res. 16(6), 1651–1659 (2001)

    Article  ADS  CAS  Google Scholar 

  16. A. Yakymovych, P. Švec, L. Orovcik et al., Nanocomposite SAC solders: the effect of adding Ni and Ni-Sn nanoparticles on morphology and mechanical properties of Sn-3.0 Ag-0.5 Cu solders. J. Electron. Mater. 47, 117–123 (2018)

    Article  ADS  CAS  Google Scholar 

  17. H. Wang, X. Hu, X. Jiang, Effects of Ni modified MWCNTs on the microstructural evolution and shear strength of Sn-3.0 Ag-0.5 Cu composite solder joints. Mater Charact 163, 110287 (2020)

    Article  CAS  Google Scholar 

  18. D. Giuranno, S. Delsante, G. Borzone et al., Effects of Sb addition on the properties of Sn-Ag-Cu/(Cu, Ni) solder systems. J. Alloy. Compd. 689, 918–930 (2016)

    Article  CAS  Google Scholar 

  19. M. Hasnine, M.J. Bozack, Effects of Ga additives on the thermal and wetting performance of Sn-07 Cu solder. J. Electron. Mater. 48, 3970–3978 (2019)

    Article  ADS  CAS  Google Scholar 

  20. Z. Zhang, X. Hu, X. Jiang et al., Influences of mono-Ni (P) and dual-Cu/Ni (P) plating on the interfacial microstructure evolution of solder joints. Metall. and Mater. Trans. A. 50, 480–492 (2019)

    Article  ADS  CAS  Google Scholar 

  21. A.A. El-Daly, A.M. El-Taher, S. Gouda, Development of new multicomponent Sn–Ag–Cu–Bi lead-free solders for low-cost commercial electronic assembly. J. Alloy. Compd. 627, 268–275 (2015)

    Article  CAS  Google Scholar 

  22. Z. Dong, K. You, H. Yuan et al., Machine learning assisted design of high-strength Sn-3.8 Ag-0.7 Cu alloys with the co-additions of Bi and In. Mater. Sci. Eng. A 861, 144257 (2022)

    Article  CAS  Google Scholar 

  23. H.Y. Zahran, A.S. Mahmoud, A.F. Abd El-Rehim, Effect of Bi content on the microstructure and mechanical performance of Sn-1Ag-0.5 Cu solder alloy. Crystals 11(3), 314 (2021)

    Article  CAS  Google Scholar 

  24. C. Pu, J. Qiu, C. Li et al., Effects of Bi addition on the solderability and mechanical properties of Sn-Zn-Cu lead-free solder. J. Electron. Mater. 51(9), 4952–4963 (2022)

    Article  ADS  CAS  Google Scholar 

  25. N.K. Liyana, M.A. Fazal, A. Haseeb et al., Effect of Zn incorporation on the electrochemical corrosion properties of SAC105 solder alloys. J. Mater. Sci. Mater. Electron. 30, 7415–7422 (2019)

    Article  CAS  Google Scholar 

  26. M. Said, M.F.M. Nazeri, N.M. Sharif et al., Corrosion properties of Cu/Sn–3.0 Ag–0.5 Cu/Cu solder butt joints fabricated by conventional reflow and microwave hybrid heating. Corr. Sci. 208, 110641 (2022)

    Article  CAS  Google Scholar 

  27. A. Guédon-Gracia, H. Frémont, B. Plano et al., Effects of salt spray test on lead-free solder alloy. Microelectron. Reliab. 64, 242–247 (2016)

    Article  Google Scholar 

  28. M. Fayeka, A. Haseeb, M.A. Fazal, Electrochemical corrosion behaviour of Pb-free SAC 105 and SAC 305 solder alloys: a comparative study. Sains Malays. 46(2), 295–302 (2017)

    Article  CAS  Google Scholar 

  29. S.A. Belyakov, J.W. **an, K. Sweatman et al., Influence of bismuth on the solidification of Sn-0.7 Cu-0.05 Ni-xBi/Cu joints. J. Alloys Compd. 701, 321–334 (2017)

    Article  CAS  Google Scholar 

  30. J.M. Juarez Jr., P. Snugovsky, E. Kosiba et al., Manufacturability and reliability screening of lower melting point, Pb-free alloys containing bismuth. J. Microelectron. Electron. Packag. 12(1), 1–28 (2015)

    Article  Google Scholar 

  31. D. Li, P.P. Conway, C. Liu, Corrosion characterization of tin–lead and lead free solders in 35 wt% NaCl solution. Corr. Sci. 50(4), 995–1004 (2008)

    Article  CAS  Google Scholar 

  32. U.S. Mohanty, K.L. Lin, Corrosion behavior of Pb-free Sn-1Ag-0.5 Cu-X Ni Solder Alloys in 3.5% NaCl solution. J. Electron. Mater. 42, 628–638 (2013)

    Article  ADS  CAS  Google Scholar 

  33. M.H. Braga, J. Vizdal, A. Kroupa et al., The experimental study of the Bi–Sn, Bi–Zn and Bi–Sn–Zn systems. Calphad 31(4), 468–478 (2007)

    Article  CAS  Google Scholar 

  34. S.D. Kapusta, N. Hackerman, Anodic passivation of tin in slightly alkaline solutions. Electrochim. Acta 25(12), 1625–1639 (1980)

    Article  CAS  Google Scholar 

  35. P.E. Alvarez, S.B. Ribotta, M.E. Folquer et al., Potentiodynamic behaviour of tin in different buffer solutions. Corros. Sci. 44(1), 49–65 (2002)

    Article  CAS  Google Scholar 

  36. H.S.E. El Abd, E.S. Gouda, N.A.A. Ghany, Effect of Al and Bi addition on the corrosion behaviour, hardness, and melting temperature of lead-free solder alloys. Microelectron. Reliab. 147, 115051 (2023)

    Article  Google Scholar 

  37. J.A. Wu, A. Luktuke, N. Chawla, Surface precipitation and growth of bismuth particles in Sn-Ag-Cu-Bi solder joints. J. Electron. Mater. 52(2), 801–809 (2023)

    Article  ADS  CAS  Google Scholar 

  38. Y. Chen, Z.C. Meng, L.Y. Gao et al., Effect of Bi addition on the shear strength and failure mechanism of low-Ag lead-free solder joints. J. Mater. Sci. Mater. Electron. 32, 2172–2186 (2021)

    Article  CAS  Google Scholar 

  39. G.S. Duffó, S.B. Farina, F.M.S. Rodríguez, Corrosion behaviour of non-ferrous metals embedded in mortar. Constr. Build. Mater. 210, 548–554 (2019)

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (No. 52165047 and 52361009).

Author information

Authors and Affiliations

Authors

Contributions

LZ: Conceptualization, Methodology, Sample Preparation, Formal analysis, Investigation, Data curation, Writing—original draft, Visualization. WC: Investigation, Data curation, Visualization. XH: Methodology, Supervision, Resources, Writing—review and editing. ZZ: Methodology, Formal analysis, Data curation, Investigation. BC: Methodology, Formal analysis, Data curation. JW: Formal analysis, Data curation. ST: Sample Preparation, Methodology. XJ: Formal analysis, Investigation.

Corresponding authors

Correspondence to Wen**g Chen, **aowu Hu or **ongxin Jiang.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, L., Chen, W., Hu, X. et al. Role of bismuth in the mechanical and corrosion properties of Cu/Sn-3.0Ag-0.5Cu/Cu solder lap joints. J Mater Sci: Mater Electron 35, 111 (2024). https://doi.org/10.1007/s10854-024-11942-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-11942-9

Navigation