Log in

An investigation of microwave dielectric properties of BaZr0.25Ti0.75O3 and performance of DRA for 5G application

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

BaZr0.25Ti0.75O3 ceramic’s structural, microstructural, and dielectric performances in the microwave region are illustrated in the current work for its prospective use in dielectric resonator antennas at the 5G frequency. Making the BaZr0.25Ti0.75O3 composition involved using the standard solid-state method. The phase was discovered by the X-ray diffraction process, proving a cubic symmetry to exist in the composition. The Rietveld refinement method was used to obtain the structural parameters. The BaZr0.25Ti0.75O3 ceramic's microstructural shape shows a clearly defined, dense grain. Measurements of the prepared sample's microwave dielectric properties were made across the frequency range of 1 to 10 GHz. Around 2–5 GHz, it is discovered that the relative permittivity and dielectric loss are mainly stable and change with frequency. The quality factor (Q × f) and temperature coefficient of resonant frequency (τf), which are the dielectric factors in the microwave area, were computed using the conventional formula. The temperature-dependent dielectric properties have been used to compute the permittivity's temperature coefficient. HFSS software has been used to investigate the simulated performance of dielectric resonator antennas (DRA)-based on BaZr0.25Ti0.75O3 ceramic. The simulated S11 parameter that was obtained exhibits superior return loss and excellent efficiency at 3.3 GHz. We have shown the input impedance, gain, and radiation pattern at ϕ = 0° and ϕ = 90°. It has been shown how the electric and magnetic fields are distributed in DRA. Furthermore, the simulated result has been used to obtain the bandwidth, VSWR, and mismatch loss.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. M.T. Sebastian, Dielectric Materials for Wireless Communication (Elsevier, Oxford, 2010), pp. 161–170

    Google Scholar 

  2. A. Petosa, A. Ittipiboon, IEEE Antennas Propag. Mag. 52, 91–116 (2010). https://doi.org/10.1109/MAP.2010.5687510

    Article  ADS  Google Scholar 

  3. L. Nedelcu, M.I. Toacsan, M.G. Banciu, A. Ioachim, J. Alloys Compd. 509, 477–481 (2011). https://doi.org/10.1016/j.jallcom.2010.09.069

    Article  CAS  Google Scholar 

  4. Z. Liu, Y. Wang, W. Wu, Y. Li, J. Asian Ceram. Soc. 1, 2–8 (2013). https://doi.org/10.1016/j.jascer.2013.02.002

    Article  Google Scholar 

  5. R.K. Chaudhary, H.B. Baskey, K.V. Srivastava, A. Biswas, IET Microw. Antennas Propag. 6, 740–746 (2011). https://doi.org/10.1049/iet-map.2011.0467

    Article  Google Scholar 

  6. S. Genovesi, F. Costa, B. Cioni, V. Miceli, G. Annino, G. Gallone, G. Levita, A. Lazzeri, A. Monorchio, G. Manara, Microw. Opt. Technol. Lett. 51, 2753–2758 (2009). https://doi.org/10.1002/mop.24731

    Article  Google Scholar 

  7. A. Templeton, X. Wang, S.J. Penn, S.J. Webb, L.F. Cohen, N. Alford, J. Am. Ceram. Soc. 83, 95–100 (2000). https://doi.org/10.1111/j.1151-2916.2000.tb01154.x

    Article  CAS  Google Scholar 

  8. D.J. Masse, R.A. Pucel, D.W. Readey, E.A. Maguire, C.P. Hartwig, Proc. IEEE 59, 1628–1632 (1971). https://doi.org/10.1109/PROC.1971.8508

    Article  Google Scholar 

  9. J.K. Plourde, D.F. Linn, H.M. O’Brian Jr., J. Thomson, J. Am. Ceram. Soc. 58, 418–422 (1975). https://doi.org/10.1111/j.1151-2916.1975.tb19013.x

    Article  CAS  Google Scholar 

  10. S.L. Zhang, P.P. Ma, X.Q. Liu, X.M. Chen, J. Alloys Compd. 693, 87–94 (2017). https://doi.org/10.1016/j.jallcom.2016.09.088

    Article  CAS  Google Scholar 

  11. I.M. Reaney, D. Iddles, J. Am. Ceram. Soc. 89, 2063–2072 (2006). https://doi.org/10.1111/j.1551-2916.2006.01025.x

    Article  CAS  Google Scholar 

  12. M. Zhang, P. Xu, H. Peng, F. Qin, Compos. B Eng. 215, 108764 (2021). https://doi.org/10.1016/j.compositesb.2021.108764

    Article  CAS  Google Scholar 

  13. X.V. Sivasubramanyan, V.R.K. Murthy, B. Viswanathan, Jpn. J. Appl. Phys. 36, 194–197 (1997). https://doi.org/10.1143/JJAP.36.194

    Article  ADS  Google Scholar 

  14. P.P. Ma, L. Yi, S.Y. Wu, X.M. Chen, H. Gu, J. Am. Ceram. Soc. 98, 520–527 (2014). https://doi.org/10.1111/jace.13304

    Article  CAS  Google Scholar 

  15. K. Aliouame, A. Guehria-Laidoudi, A. Simon, J. Ravez, Solid State Sci. 7, 1324–1332 (2005). https://doi.org/10.1016/j.solidstatesciences.2005.06.010

    Article  CAS  ADS  Google Scholar 

  16. J. Bera, S.K. Rout, Mater. Lett. 59, 135–138 (2005). https://doi.org/10.1016/j.matlet.2004.07.053

    Article  CAS  Google Scholar 

  17. R. Farhi, M. El Marssi, A. Simon, J. Ravez, Eur. Phys. J. B. 9, 599–604 (1999). https://doi.org/10.1007/s100510050803

    Article  CAS  ADS  Google Scholar 

  18. U. Weber, G. Greuel, U. Boettger, S. Weber, D. Henings, R. Waser, J. Am. Ceram. Soc. 84, 759–766 (2001). https://doi.org/10.1111/j.1151-2916.2001.tb00738.x

    Article  CAS  Google Scholar 

  19. S.J. Lee, M.H. Kwak, S.E. Moon, H.C. Ryu, Y.T. Kim, K.Y. Kang, Integr. Ferroelectr. 77, 93–99 (2005). https://doi.org/10.1080/10584580500414218

    Article  CAS  ADS  Google Scholar 

  20. N. Binhayeeniyi, P. Sukvisut, C. Thanachayanont, S. Muensit, Mater. Lett. 64, 305–308 (2010). https://doi.org/10.1016/j.matlet.2009.10.069

    Article  CAS  Google Scholar 

  21. S.J. Kuang, X.G. Tang, L.Y. Li, Y.P. Jiang, Q.X. Liu, Scr. Mater. 61, 68–71 (2009). https://doi.org/10.1016/j.scriptamat.2009.03.016

    Article  CAS  Google Scholar 

  22. N. Nanakorn, P. Jalupoom, N. Vaneesorn, A. Thanaboonsombut, Ceram. Int. 34, 779–782 (2008). https://doi.org/10.1016/j.ceramint.2007.09.024

    Article  CAS  Google Scholar 

  23. P.S. Dobal, A. Dixit, R.S. Katiyar, Z. Yu, R. Guo, A.S. Bhalla, J. Appl. Phys. 89, 8085–8091 (2001). https://doi.org/10.1063/1.1369399

    Article  CAS  ADS  Google Scholar 

  24. D. Hennings, A. Schnell, G. Simon, J. Am. Ceram. Soc. 65, 539–544 (1982). https://doi.org/10.1111/j.1151-2916.1982.tb10778.x

    Article  CAS  Google Scholar 

  25. T. Badapanda, S.K. Rout, L.S. Cavalcante, J.C. Sczancoski, S. Panigrahi, E. Longo, M. Siu Li, J. Phys. D Appl. Phys. 42, 175414 (2009). https://doi.org/10.1088/0022-3727/42/17/175414

    Article  CAS  ADS  Google Scholar 

  26. B. Ullah, W. Lei, Y.F. Yao, X.C. Wang, X.H. Wang, M.U. Rahman, W.Z. Lu, J. Alloys Compd. 763, 990–996 (2018). https://doi.org/10.1016/j.jallcom.2018.05.231

    Article  CAS  Google Scholar 

  27. I. Ali, M.H. Jamaluddin, A. Gaya, H. Rahim, A. Sensors. 20, 675 (2020). https://doi.org/10.3390/s20030675

    Article  PubMed  ADS  Google Scholar 

  28. R.G.M. Oliveira, J.E.V. Morais, D.C. Souza, M.A.S. Silva, D.X. Gouveia, S. Trukhanov, A. Trukhanov, L. Panina, C. Singh, D. Zhou, A.S.B. Sombra, J. Aust. Ceram. Soc. 57, 369–377 (2021). https://doi.org/10.1007/s41779-020-00559-w

    Article  CAS  Google Scholar 

  29. P. Aktas, J. Chem. Sci. 132, 130 (2020). https://doi.org/10.1007/s12039-020-01837-7

    Article  CAS  Google Scholar 

  30. T. Badapanda, V. Senthil, S.K. Rout, L.S. Cavalcante, A.Z. Simoes, T.P. Sinha, S. Panigrahi, M.M.D. Jesus, E. Longo, J.A. Varela, Curr. Appl. Phys. 11, 1282–1293 (2011). https://doi.org/10.1016/j.cap.2011.03.056

    Article  ADS  Google Scholar 

  31. A. Ali, S. Uddin, M. Lal, A. Zaman, Z. Iqbal, K. Althubeiti, Sci. Rep. 11, 17889 (2021). https://doi.org/10.1038/s41598-021-97584-x

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  32. R. Freer, F. Azough, J. Eur. Ceram. Soc. 28, 1433–1441 (2008). https://doi.org/10.1016/j.jeurceramsoc.2007.12.005

    Article  CAS  Google Scholar 

  33. R. Muhammad, Y. Iqbal, C.R. Rambo, H. Khan, Int. J. Mater. Res. 105, 431–439 (2014). https://doi.org/10.3139/146.111044

    Article  CAS  Google Scholar 

  34. S. Kumar, V. Raju, T. Kutty, Mater. Sci. Eng. B 142, 78–85 (2007). https://doi.org/10.1016/j.mseb.2007.06.018

    Article  CAS  Google Scholar 

  35. L. Liu, M. Flores, N. Newman, Phys. Rev. Lett. 109, 257601 (2012). https://doi.org/10.1103/PhysRevLett.109.257601

    Article  CAS  PubMed  ADS  Google Scholar 

  36. C.M. Cheng, C.F. Yang, S.H. Lo, T.Y. Tseng, J. Eur. Ceram. Soc. 20, 1061–1067 (2000). https://doi.org/10.1016/S0955-2219(99)00247-2

    Article  CAS  Google Scholar 

  37. B. Lu, K.M. Sha, F. Zhou, K.X. Song, Y.H. Huang, C.C. Hu, J. Eur. Ceram. Soc. 41, 5170–5175 (2021). https://doi.org/10.1016/j.jeurceramsoc.2021.04.033

    Article  CAS  Google Scholar 

  38. P.P. Ma, X.Q. Liu, F.Q. Zhang, J.J. **ng, X.M. Chen, J. Am. Ceram. Soc. 98, 2534–2540 (2015). https://doi.org/10.1111/jace.13655

    Article  CAS  Google Scholar 

  39. G.M. Keith, C.A. Kirk, K. Sarma, N.M. Alford, E.J. Cussen, M.J. Rosseinsky, D.C. Sinclair, Chem. Mater. 16, 2007–2015 (2004). https://doi.org/10.1021/cm035317n

    Article  CAS  Google Scholar 

  40. M. Reaney, E.L. Colla, N. Setter, Jpn. J. Appl. Phys. 33, 3984–3990 (1994). https://doi.org/10.1143/JJAP.33.3984

    Article  CAS  ADS  Google Scholar 

  41. J. Joseph, T.M. Vimala, K.C.J. Raju, V.R.K. Murthy, Jpn. J. Appl. Phys. 35, 179 (1996). https://doi.org/10.1143/JJAP.35.179

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgements

One of the authors, SNT acknowledges Odisha State Higher Education Council for providing financial support under OURIIP Seed Fund with reference no 22SF/PH/092. The authors are thankful to Dr. Elliot L. Bennett, University of Liverpool, for hel** with the microwave dielectric measurement.

Funding

This work was funded by OURIIP Seed Fund, 22SF/PH/092.

Author information

Authors and Affiliations

Authors

Contributions

SM: methodology, formal analysis, investigation, writing—original draft. TB: conceptualization, supervision, writing—review & editing. SNT: conceptualization, data curation, writing—original draft.

Corresponding author

Correspondence to T. Badapanda.

Ethics declarations

Conflict of interest

There are no conflicts of interest among the authors. The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohapatra, S., Badapanda, T. & Tripathy, S.N. An investigation of microwave dielectric properties of BaZr0.25Ti0.75O3 and performance of DRA for 5G application. J Mater Sci: Mater Electron 35, 167 (2024). https://doi.org/10.1007/s10854-024-11937-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-11937-6

Navigation