Log in

Fabrication and unraveling the morphological, structural, and dielectric features of PMMA-PEO-SiC–BaTiO3 promising quaternary nanocomposites for multifunctional nanoelectronics applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The current work aims to fabricate of barium titanate (BaTiO3) and silicon carbide (SiC) nanostructures doped blended of poly-methyl methacrylate (PMMA) and polyethylene oxide (PEO) to apply in promising pressure sensors and electronics applications. The morphological, structural, and dielectric properties of (PMMA-PEO/BaTiO3–SiC) nanocomposites were investigated. The Fourier transform infrared spectroscopy (FTIR), optical microscopic(OM) and scanning electron microscope(SEM) measurements were examined. The dielectric properties were studied at frequency ranged from 100 Hz to 5 × 106 Hz. The results of dielectric properties confirmed that the dielectric constant (ε′) and dielectric loss (ε′′) of (PMMA-PEO/BaTiO3–SiC) nanocomposites decreased with increasing frequency, while they tend to increase when the ratio of (BaTiO3–SiC) NPs increased. The A.C conductivity of (PMMA-PEO/BaTiO3–SiC) nanocomposites enhanced with rising frequency and ratio of (BaTiO3–SiC) NPs. The (PMMA-PEO/BaTiO3–SiC) nanocomposites examined for the pressure sensors application in the pressure range of 80–160 bar. The findings indicated to enhance of dielectric factors with rising pressure. Finally, findings of morphological, structural and dielectric properties confirmed that the (PMMA-PEO/BaTiO3–SiC) nanocomposites have individual characteristics compared of other nanomaterials which make it significant technologically in the development of several advanced microelectronic and promising optoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Yes, the data are available.

References

  1. F. Namouchi, H. Smaoui, N. Fourati, C. Zerrouki, H. Guermazi, J.J. Bonnet, Investigation on electrical properties of thermally aged PMMA by combined use of FTIR and impedance spectroscopies. J. Alloys Compd. 469(1), 197–202 (2009). https://doi.org/10.1016/j.jallcom.2008.01.148

    Article  CAS  Google Scholar 

  2. Tanaka, T. and T. Imai, Advanced nanodielectrics: fundamentals and applications (2017) https://doi.org/10.1201/9781315230740

  3. S. Choudhary, R.J. Sengwa, ZnO nanoparticles dispersed PVA–PVP blend matrix based high performance flexible nanodielectrics for multifunctional microelectronic devices. Curr. Appl. Phys. 18(9), 1041–1058 (2018). https://doi.org/10.1016/j.cap.2018.05.023

    Article  ADS  Google Scholar 

  4. M.A. Morsi, M. Abdelaziz, A.H. Oraby, I. Mokhles, Structural, optical, thermal, and dielectric properties of polyethylene oxide/carboxymethyl cellulose blend filled with barium titanate. J. Phys. Chem. Solids 125, 103–114 (2019). https://doi.org/10.1016/j.jpcs.2018.10.009

    Article  ADS  CAS  Google Scholar 

  5. R.J. Sengwa, S. Choudhary, P. Dhatarwal, Nonlinear optical and dielectric properties of TiO2 nanoparticles incorporated PEO/PVP blend matrix based multifunctional polymer nanocomposites. J. Mater. Sci. Mater. Electron. 30(13), 12275–12294 (2019). https://doi.org/10.1007/s10854-019-01587-4

    Article  CAS  Google Scholar 

  6. R.J. Sengwa, S. Choudhary, P. Dhatarwal, Investigation of alumina nanofiller impact on the structural and dielectric properties of PEO/PMMA blend matrix-based polymer nanocomposites. Adv. Compos. Hybrid Mater. 2(1), 162–175 (2019). https://doi.org/10.1007/s42114-019-00078-8

    Article  CAS  Google Scholar 

  7. C. Tsonos, H. Zois, A. Kanapitsas, N. Soin, E. Siores, G.D. Peppas, E.C. Pyrgioti, A. Sanida, S.G. Stavropoulos, G.C. Psarras, Polyvinylidene fluoride/magnetite nanocomposites: dielectric and thermal response. J. Phys. Chem. Solids 129, 378–386 (2019). https://doi.org/10.1016/j.jpcs.2019.01.025

    Article  ADS  CAS  Google Scholar 

  8. D.Q. Tan, Review of polymer-based nanodielectric exploration and film scale-up for advanced capacitors. Adv. Func. Mater. 30(18), 1808567 (2020). https://doi.org/10.1002/adfm.201808567

    Article  CAS  Google Scholar 

  9. A.C. Konstantinou, A.C. Patsidis, G.C. Psarras, Boron nitride/epoxy resin nanocomposites: development, characterization and functionality. J. Therm. Anal. Calorim. 145(6), 2925–2933 (2021). https://doi.org/10.1007/s10973-020-09933-z

    Article  CAS  Google Scholar 

  10. K.H. Al-Attiyah, A. Hashim, S.F. Obaid, Synthesis of new nanocomposites: Carboxy methyl cellulose–polyvinylpyrrolidone–polyvinyl alcohol/lead oxide nanoparticles: structural and electrical properties as gamma ray sensor for bioenvironmental applications. J. Bionanosci. (2018). https://doi.org/10.1166/jbns.2018.1526

    Article  Google Scholar 

  11. A. Hashim, I.R. Agool, K.J. Kadhim, Modern developments in polymer nanocomposites for antibacterial and antimicrobial applications: a review. J. Bionanosci. (2018). https://doi.org/10.1166/jbns.2018.1580

    Article  Google Scholar 

  12. H. Ahmed, A. Hashim, Design and characteristics of novel PVA/PEG/Y2O3 structure for optoelectronics devices. J. Mol. Model. 26, 210 (2020). https://doi.org/10.1007/s00894-020-04479-1

    Article  CAS  PubMed  Google Scholar 

  13. H. Ahmed, A. Hashim, Lightweight, flexible and high energies absorption property of PbO2 doped polymer blend for various renewable approaches. Trans. Electr. Electron. Mater. 22, 335–345 (2021). https://doi.org/10.1007/s42341-020-00244-6

    Article  Google Scholar 

  14. H. Ahmed, A. Hashim, Design of polymer/lithium fluoride new structure for renewable and electronics applications. Trans. Electr. Electron. Mater. 23, 237–246 (2022). https://doi.org/10.1007/s42341-021-00340-1

    Article  Google Scholar 

  15. T.S. Soliman, A.M. Rashad, I.A. Ali, S.I. Khater, S.I. Elkalashy, Investigation of linear optical parameters and dielectric properties of polyvinyl alcohol/ZnO nanocomposite films. Phys. Status Solidi (a) 217(19), 2000321 (2020). https://doi.org/10.1002/pssa.202000321

    Article  ADS  CAS  Google Scholar 

  16. R.J. Sengwa, P. Dhatarwal, S. Choudhary, A comparative study of different metal oxide nanoparticles dispersed PVDF/PEO blend matrix-based advanced multifunctional nanodielectrics for flexible electronic devices. Mater. Today Commun. 25, 101380 (2020). https://doi.org/10.1016/j.mtcomm.2020.101380

    Article  CAS  Google Scholar 

  17. A.I. Isayev, Encyclopedia of polymer blends. Structure (2016). https://doi.org/10.1002/9783527653966

    Article  Google Scholar 

  18. Ajitha, A.R. and S. Thomas, Chapter 1—Introduction: Polymer blends, thermodynamics, miscibility, phase separation, and compatibilization. 2020.1–29. https://doi.org/10.1016/B978-0-12-816006-0.00001-3

  19. S. Thomas, Y. Grohens, P. Jyotishkumar, Characterization of polymer blends: miscibility. Morphol Interfaces (2014). https://doi.org/10.1002/9783527645602

    Article  Google Scholar 

  20. C. Lartigue, A. Guillermo, J.P. Cohen-Addad, Proton NMR investigation of the local dynamics of PEO in PEO/PMMA blends. J. Polymer Sci. Part B: Polymer Phys. 35(7), 1095–1105 (1997)

    Article  ADS  CAS  Google Scholar 

  21. I. Hopkinson, F.T. Kiff, R.W. Richards, S.M. King, T. Farren, Isotopic labelling and composition dependence of interaction parameters in polyethylene oxide/polymethyl methacrylate blends. Polymer 36(18), 3523–3531 (1995). https://doi.org/10.1016/0032-3861(95)92024-9

    Article  CAS  Google Scholar 

  22. M. Dionísio, A.C. Fernandes, J.F. Mano, N.T. Correia, R.C. Sousa, Relaxation studies in PEO/PMMA blends. Macromolecules 33(3), 1002–1011 (2000). https://doi.org/10.1021/ma9913818

    Article  ADS  CAS  Google Scholar 

  23. W.B. Liau, C.F. Chang, Casting solvent effect on crystallization behavior and morphology of poly(ethylene oxide)/poly(methyl methacrylate). J. Appl. Polym. Sci. 76(11), 1627–1636 (2000). https://doi.org/10.1002/(SICI)1097-4628(20000613)76:11%3c1627::AID-APP3%3e3.0.CO;2-U

    Article  CAS  Google Scholar 

  24. V.G. Sakai, C. Chen, J.K. Maranas, Z. Chowdhuri, Effect of blending with Poly(ethylene oxide) on the dynamics of poly(methyl methacrylate): a Quasi-elastic neutron scattering approach. Macromolecules 37(26), 9975–9983 (2004). https://doi.org/10.1021/ma0497355

    Article  ADS  CAS  Google Scholar 

  25. B. Farago, C. Chen, J.K. Maranas, S. Kamath, R.H. Colby, A.J. Pasquale, T.E. Long, Collective motion in poly(ethylene oxide)/poly(methylmethacrylate) blends. Phys. Rev. E 72(3), 031809 (2005). https://doi.org/10.1103/PhysRevE.72.031809

    Article  ADS  CAS  Google Scholar 

  26. J. Liu, V.G. Sakai, J.K. Maranas, Composition dependence of segmental dynamics of poly(methyl methacrylate) in miscible blends with poly(ethylene oxide). Macromolecules 39(8), 2866–2874 (2006). https://doi.org/10.1021/ma052136t

    Article  ADS  CAS  Google Scholar 

  27. V. García Sakai, J.K. Maranas, I. Peral, J.R.D. Copley, Dynamics of PEO in blends with PMMA: study of the effects of blend composition via Quasi-elastic neutron scattering. Macromolecules 41(10), 3701–3710 (2008). https://doi.org/10.1021/ma0714870

    Article  ADS  CAS  Google Scholar 

  28. C. Chen, J.K. Maranas, A molecular view of dynamic responses when mixing poly(ethylene oxide) and poly(methyl methacrylate). Macromolecules 42(7), 2795–2805 (2009). https://doi.org/10.1021/ma802183h

    Article  ADS  CAS  Google Scholar 

  29. M. Brodeck, F. Alvarez, J. Colmenero, D. Richter, Single chain dynamic structure factor of poly(ethylene oxide) in dynamically asymmetric blends with poly(methyl methacrylate). Neutron scattering and molecular dynamics simulations. Macromolecules 45(1), 536–542 (2012). https://doi.org/10.1021/ma2016634

    Article  ADS  CAS  Google Scholar 

  30. M. Ghelichi, N.T. Qazvini, S.H. Jafari, H.A. Khonakdar, Y. Farajollahi, C. Scheffler, Conformational, thermal, and ionic conductivity behavior of PEO in PEO/PMMA miscible blend: investigating the effect of lithium salt. J. Appl. Polymer Science 129(4), 1868–1874 (2013). https://doi.org/10.1002/app.38897

    Article  CAS  Google Scholar 

  31. J. Colmenero, Non-exponential Rouse correlators and generalized magnitudes probing chain dynamics. J. Non-Crystalline Solids 407, 302–308 (2015). https://doi.org/10.1016/j.jnoncrysol.2014.09.033

    Article  ADS  CAS  Google Scholar 

  32. C. Luo, W. Chen, Y. Gao, Feather-like morphology of poly(methyl methacrylate)/poly(ethylene oxide) blends: the effect of cooling rate and poly(methyl methacrylate) content. J. Appl. Polymer Sci. (2015). https://doi.org/10.1002/app.41705

    Article  Google Scholar 

  33. F.A. Jasim, A. Hashim, A.G. Hadi, F. Lafta, S.R. Salman, H. Ahmed, Preparation of (pomegranate peel-polystyrene) composites and study their optical properties. Res. Journal of Appl. Sci. 8(9), 439–441 (2013)

    Google Scholar 

  34. H.B. Hassan, A. Hashim, H.M. Abduljalil, Tailoring structural, optical characteristics of CuO/In2O3 nanoparticles-doped organic material for photodegradation of dyes pollutants. Polym. Bull. 80, 9059–9075 (2023). https://doi.org/10.1007/s00289-022-04502-w

    Article  CAS  Google Scholar 

  35. H.B. Hassan, A. Hashim, H.M. Abduljalil, Synthesis, structural and optical characteristics of PEO/NiO/In2O3 hybrid nanomaterials for photodegradation of pollutants from wastewater. Opt. Quant. Electron. 55, 556 (2023). https://doi.org/10.1007/s11082-023-04830-9

    Article  CAS  Google Scholar 

  36. H. Ahmed, A. Hashim, Design and tailoring the structural and spectroscopic characteristics of Sb2S3 nanostructures doped PMMA for flexible nanoelectronics and optical fields. Opt. Quant. Electron. 55, 280 (2023). https://doi.org/10.1007/s11082-022-04528-4

    Article  CAS  Google Scholar 

  37. A. Hashim, Enhanced morphological, optical and electronic characteristics of WC NPs doped PVP/PEO for flexible and lightweight optoelectronics applications. Opt. Quant. Electron. 53, 478 (2021). https://doi.org/10.1007/s11082-021-03100-w

    Article  CAS  Google Scholar 

  38. A. Hazim, H.M. Abduljalil, A. Hashim, Design of PMMA doped with inorganic materials as promising structures for optoelectronics applications. Trans. Electr. Electron. Mater. 22, 851–868 (2021). https://doi.org/10.1007/s42341-021-00308-1

    Article  Google Scholar 

  39. O.B. Fadil, A. Hashim, Fabrication and tailored optical characteristics of CeO2/SiO2 nanostructures doped PMMA for electronics and optics fields. SILICON 14, 9845–9852 (2022). https://doi.org/10.1007/s12633-022-01728-1

    Article  CAS  Google Scholar 

  40. A. Hashim, M.H. Abbas, N.A.H. Al-Aaraji et al., Facile Fabrication and develo** the structural, optical and electrical properties of SiC/Y2O3 nanostructures doped PMMA for optics and potential nanodevices. SILICON 15, 1283–1290 (2023). https://doi.org/10.1007/s12633-022-02104-9

    Article  CAS  Google Scholar 

  41. A. Hazim, A. Hashim, H.M. Abduljalil, Fabrication of novel (PMMA-Al2O3/Ag) nanocomposites and its structural and optical properties for lightweight and low cost electronics applications, Egypt. J. Chem. (2021). https://doi.org/10.21608/EJCHEM.2019.18513.2144

    Article  Google Scholar 

  42. H.A.J. Hussien, R.G. Kadhim, A. Hashim, Investigating the low cost photodegradation performance against organic pollutants using CeO2/MnO2/ polymer blend nanostructures. Opt. Quant. Electron. 54, 704 (2022). https://doi.org/10.1007/s11082-022-04094-9

    Article  CAS  Google Scholar 

  43. G. Ahmed, A. Hashim, Synthesis and tailoring morphological and optical characteristics of PMMA/PEG/Si3N4 hybrid nanomaterials for optics and quantum nanoelectronics applications. SILICON (2023). https://doi.org/10.1007/s12633-023-02572-7

    Article  Google Scholar 

  44. H.K. Jaafar, A. Hashim, B.H. Rabee, Fabrication and tuning the morphological and optical characteristics of PMMA/PEO/SiC/BaTiO3 newly quaternary nanostructures for optical and quantum electronics fields. Opt. Quant. Electron. 55, 989 (2023). https://doi.org/10.1007/s11082-023-05208-7

    Article  CAS  Google Scholar 

  45. H.A.J. Hussien, R.G. Kadhim, A. Hashim, Augmented structural and optical characteristics of SnO2/MnO2-doped PEO/PVP blend for photodegradation against organic pollutants. Polym. Bull. 79, 5219–5234 (2022). https://doi.org/10.1007/s00289-021-03778-8

    Article  CAS  Google Scholar 

  46. B. Maria Teresa, B. Vincenzo, V. Massimo, P. Jan, S. Maxim, M. Liliana, T. Andrea, N. Paolo, H. Catalin, Z. Zhe, N. Mats, Ferroelectric properties of dense nanocrystalline BaTiO3 ceramics. Nanotechnology 15(9), 1113 (2004). https://doi.org/10.1088/0957-4484/15/9/001

    Article  CAS  Google Scholar 

  47. Hsiao-Lin, W., Structure and dielectric properties of perovskite–Barium Titanate (BaTiO3).Submitted in Partial Fulfillment of Course Requirement for MatE.115,3–9 (2002)

  48. M. Vijatović, J. Bobić, B.D. Stojanović, History and challenges of barium titanate: Part II. Sci. Sinter. 40(3), 235–244 (2008). https://doi.org/10.2298/SOS0803235V

    Article  CAS  Google Scholar 

  49. B. Ertuğ, The overview of the electrical properties of barium titanate. Am. J. Eng. Res. 2(8), 1–7 (2013)

    Google Scholar 

  50. H.S. Potdar, S.B. Deshpande, S.K. Date, Chemical coprecipitation of mixed (Ba+Ti) oxalates precursor leading to BaTiO3 powders1NCL Communication No 64281. Mater. Chem. Phys. 58(2), 121–127 (1999). https://doi.org/10.1016/S0254-0584(98)00262-4

    Article  CAS  Google Scholar 

  51. L. Wang, L. Liu, D. Xue, H. Kang, C. Liu, Wet routes of high purity BaTiO3 nanopowders. J. Alloys Compd. 440(1), 78–83 (2007). https://doi.org/10.1016/j.jallcom.2006.09.023

    Article  CAS  Google Scholar 

  52. M. Boulos, S. Guillemet-Fritsch, F. Mathieu, B. Durand, T. Lebey, V. Bley, Hydrothermal synthesis of nanosized BaTiO3 powders and dielectric properties of corresponding ceramics. Solid State Ion. 176(13), 1301–1309 (2005). https://doi.org/10.1016/j.ssi.2005.02.024

    Article  CAS  Google Scholar 

  53. A.V. Prasadarao, M. Suresh, S. Komarneni, pH dependent coprecipitated oxalate precursors—a thermal study of barium titanate. Mater. Lett. 39(6), 359–363 (1999). https://doi.org/10.1016/S0167-577X(99)00035-X

    Article  CAS  Google Scholar 

  54. W.-S. Cho, E. Hamada, Synthesis of ultrafine BaTiO3 particles from polymeric precursor: their structure and surface property. J. Alloys Compd. 266(1), 118–122 (1998). https://doi.org/10.1016/S0925-8388(97)00446-5

    Article  CAS  Google Scholar 

  55. B.D. Stojanovic, C. Jovalekic, V. Vukotic, A.Z. Simoes, J.A. Varela, Ferroelectric Properties of mechanically synthesized nanosized barium titanate. Ferroelectrics 319(1), 65–73 (2005). https://doi.org/10.1080/00150190590965424

    Article  ADS  CAS  Google Scholar 

  56. S. Abel, D. Caimi, M. Sousa, T. Stöferle, C. Rossel, C. Marchiori, A. Chelnokov, J. Fompeyrine, Electro-optical properties of barium titanate films epitaxially grown on silicon. Oxide-based Mater. Dev. III (2012). https://doi.org/10.1117/12908772

    Article  Google Scholar 

  57. N.Y. Naoko Yanase, K.A. Kazuhide Abe, N.F. Noburu Fukushima, T.K. Takashi Kawakubo, Thickness dependence of ferroelectricity in heteroepitaxial BaTiO3 thin film capacitors. Jpn. J. Appl. Phys. 38(9S), 5305 (1999). https://doi.org/10.1143/JJAP.38.5305

    Article  ADS  Google Scholar 

  58. W.-B. Li, D. Zhou, R. Xu, D.-W. Wang, J.-Z. Su, L.-X. Pang, W.-F. Liu, G.-H. Chen, BaTiO3-based multilayers with outstanding energy storage performance for high temperature capacitor applications. ACS Appl. Energy Mater. 2(8), 5499–5506 (2019). https://doi.org/10.1021/acsaem.9b00664

    Article  CAS  Google Scholar 

  59. K.S. Ramadan, D. Sameoto, S. Evoy, A review of piezoelectric polymers as functional materials for electromechanical transducers. Smart Mater. Struct. 23(3), 033001 (2014). https://doi.org/10.1088/0964-1726/23/3/033001

    Article  ADS  CAS  Google Scholar 

  60. Q.-J. Liu, N.-C. Zhang, F.-S. Liu, H.-Y. Wang, Z.-T. Liu, BaTiO3: energy, geometrical and electronic structure, relationship between optical constant and density from first-principles calculations. Opt. Mater. 35(12), 2629–2637 (2013). https://doi.org/10.1016/j.optmat.2013.07.034

    Article  ADS  CAS  Google Scholar 

  61. R.P. Patil, P.V. More, G.H. Jain, P.K. Khanna, V.B. Gaikwad, BaTiO3 nanostructures for H2S gas sensor: influence of band-gap, size and shape on sensing mechanism. Vacuum 146, 455–461 (2017). https://doi.org/10.1016/j.vacuum.2017.08.008

    Article  ADS  CAS  Google Scholar 

  62. B. Mohammed et al., J. Phys. Conf. Ser. 1963, 012005 (2021). https://doi.org/10.1088/1742-6596/1963/1/012005

    Article  CAS  Google Scholar 

  63. A. Hashim, B. Mohammed, A. Hadi et al., Synthesis and Augment structural and optical characteristics of PVA/SiO2/BaTiO3 nanostructures films for futuristic optical and nanoelectronics applications. J. Inorg. Organomet. Polym. (2023). https://doi.org/10.1007/s10904-023-02846-y

    Article  Google Scholar 

  64. H. Alhusaiki-Alghamdi, Effect of silicon carbide (SiC) nanoparticles on the spectroscopic properties and performance of PMMA/PC polymer blend. J. Modern Phys. 10(05), 487 (2019). https://doi.org/10.4236/jmp.2019.105034

    Article  ADS  CAS  Google Scholar 

  65. N.A.H. Al-Aaraji, A. Hashim, A. Hadi et al., Synthesis and enhanced optical characteristics of silicon carbide/copper oxide nanostructures doped transparent polymer for optics and photonics nanodevices. SILICON 14, 10037–10044 (2022). https://doi.org/10.1007/s12633-022-01730-7

    Article  CAS  Google Scholar 

  66. H. Ahmed, A. Hashim, Exploring the characteristics of new structure based on silicon doped organic blend for photonics and electronics applications. SILICON 14, 4907–4914 (2022). https://doi.org/10.1007/s12633-021-01258-2

    Article  CAS  Google Scholar 

  67. H. Ahmed, A. Hashim, Design and tailoring the optical and electronic characteristics of silicon doped PS/SnS2 new composites for nano-semiconductors devices. SILICON 14, 6637–6643 (2022). https://doi.org/10.1007/s12633-021-01449-x

    Article  CAS  Google Scholar 

  68. H. Ahmed, A. Hashim, H.M. Abduljalil, Determination of optical parameters of films Of PVA/TiO2/SiC and PVA/MgO/SiC nanocomposites for optoelectronics and UV-detectors. Ukr. J. Phys. (2020). https://doi.org/10.15407/ujpe65.6.533

    Article  Google Scholar 

  69. H. Ahmed, A. Hashim, Tuning the characteristics of novel (PVA-Li–Si3N4) structures for renewable and electronics fields. SILICON 14, 4079–4086 (2022). https://doi.org/10.1007/s12633-021-01186-1

    Article  CAS  Google Scholar 

  70. M.H. Meteab, A. Hashim, B.H. Rabee, Synthesis and tailoring the morphological, optical, electronic and photodegradation characteristics of PS–PC/MnO2–SiC quaternary nanostructures. Opt. Quant. Electron. 55, 187 (2023). https://doi.org/10.1007/s11082-022-04447-4

    Article  CAS  Google Scholar 

  71. H. Ahmed, A. Hashim, Exploring the design, optical and electronic characteristics of silicon doped (PS-B) new structures for electronics and renewable approaches. SILICON 14, 7025–7032 (2022). https://doi.org/10.1007/s12633-021-01465-x

    Article  CAS  Google Scholar 

  72. H. Ahmed, A. Hashim, Tuning the spectroscopic and electronic characteristics of ZnS/SiC nanostructures doped organic material for optical and nanoelectronics fields. SILICON 15, 2339–2348 (2023). https://doi.org/10.1007/s12633-022-02173-w

    Article  CAS  Google Scholar 

  73. H. Ahmed, A. Hashim, Design and tailoring the optical and electronic characteristics of PS/ZnS/SiBr4 new structures for electronics nanodevices. SILICON 15, 83–91 (2023). https://doi.org/10.1007/s12633-022-01978-z

    Article  CAS  Google Scholar 

  74. H. Ahmed, A. Hashim, Tunable spectroscopic, electronic and thermal characteristics of PS/Nb5Si3/ZnS nanostructures for optics and potential nanodevices. Opt. Quant. Electron. 55, 9 (2023). https://doi.org/10.1007/s11082-022-04273-8

    Article  CAS  Google Scholar 

  75. H. Ahmed, A. Hashim, Design and exploring the structure, optical and electronic characteristics of silicon doped PS/MoS2 structures for electronics nanodevices. Opt. Quant. Electron. 54, 403 (2022). https://doi.org/10.1007/s11082-022-03784-8

    Article  CAS  Google Scholar 

  76. N.A.H. Al-Aaraji, A. Hashim, H.M. Abduljalil et al., Tailoring the design, structure and spectroscopic characteristics of SiC/CuO doped transparent polymer for photonics and quantum nanoelectronics fields. Opt. Quant. Electron. 55, 743 (2023). https://doi.org/10.1007/s11082-023-05048-5

    Article  CAS  Google Scholar 

  77. A.F. Kadhim, A. Hashim, Fabrication and augmented structural optical properties of PS/SiO2/SrTiO3 hybrid nanostructures for optical and photonics applications. Opt. Quant. Electron. 55, 432 (2023). https://doi.org/10.1007/s11082-023-04699-8

    Article  CAS  Google Scholar 

  78. A. Hashim, Z.S. Hamad, Lower cost and higher UV-Absorption of polyvinyl alcohol/ silica nanocomposites for potential applications Egypt. J. Chem. (2020). https://doi.org/10.2108/EJCHEM.2019.7264.1593

    Article  Google Scholar 

  79. A. Rawat, H.K. Mahavar, A. Tanwar, P.J. Singh, Study of electrical properties of polyvinylpyrrolidone/polyacrylamide blend thin films. Bull. Mater. Sci. (2014). https://doi.org/10.1007/s12034-014-0639-4

    Article  Google Scholar 

  80. L.A. Abdelwahab, A. El-Hag Ali, R.A. Zaghlool, N.A. Mohsen, Dielectric properties, impedance analysis, and electrical conductivity of Ag doped radiation grafted polypropylene, Egypt. J. Rad. Sci. Applic. (2017). https://doi.org/10.2108/ejrsa.2017.1260

    Article  Google Scholar 

  81. G. Murtaza, S.H. Bukhari, L. Ali, S.Z. Ilyas, A. Hakeem, M.N. Usmani, G. Mustafa, F. Rehman, effect of polyvinyl alcohol on structural and dielectrical properties of polyaniline. Dig. J. Nanomater. Biostructures 14(1), 101–108 (2019)

    Google Scholar 

  82. G. Ahmed, A. Hashim, Synthesis of PMMA/PEG/Si3N4 nanostructures and exploring the structural and dielectric characteristics for flexible nanoelectronics applications. SILICON 15, 3977–3985 (2023). https://doi.org/10.1007/s12633-023-02322-9

    Article  CAS  Google Scholar 

  83. S.B. Balakrishnan, M. Alam, N. Ahmad, M. Govindasamy, S. Kuppu, S. Thambusamy, Electrospinning nanofibrous graft preparation and wound healing studies using ZnO nanoparticles and glucosamine loaded with poly (methyl methacrylate)/polyethylene glycol. New J. Chem. 45(18), 7987–7998 (2021). https://doi.org/10.1039/D0NJ05409G

    Article  CAS  Google Scholar 

  84. H.A.J. Hussien, R.G. Kadhim, A. Hashim, Tuning the optical characteristics of SiO2/MnO2 nanostructures doped organic blend for photodegradation of organic dyes. Opt. Quant. Electron. 53, 501 (2021). https://doi.org/10.1007/s11082-021-03157-7

    Article  CAS  Google Scholar 

  85. O.G. Abdullah, S.A. Saleem, Effect of copper sulfide nanoparticles on the optical and electrical behavior of poly(vinyl alcohol) films. J. Electron. Mater. 45(11), 5910–5920 (2016). https://doi.org/10.1007/s11664-016-4797-6

    Article  ADS  CAS  Google Scholar 

  86. K. Rajesh, V. Crasta, N.B. Rithin Kumar, G. Shetty, P.D. Rekha, Structural, optical, mechanical and dielectric properties of titanium dioxide doped PVA/PVP nanocomposite. J. Polym. Res. 26(4), 99 (2019). https://doi.org/10.1007/s10965-019-1762-0

    Article  CAS  Google Scholar 

  87. A. Hashim, A. Hadi, N.A.H. Al-Aaraji et al., Fabrication and Augmented structural, optical and electrical features of PVA/Fe2O3/SiC hybrid nanosystem for optics and nanoelectronics fields. SILICON 15, 5725–5734 (2023). https://doi.org/10.1007/s12633-023-02471-x

    Article  CAS  Google Scholar 

  88. N.A.H. Al-Aaraji, A. Hashim, A. Hadi et al., Effect of silicon carbide nanoparticles addition on structural and dielectric characteristics of PVA/CuO nanostructures for electronics devices. SILICON 14, 4699–4705 (2022). https://doi.org/10.1007/s12633-021-01265-3

    Article  CAS  Google Scholar 

  89. A. Hashim, M.H. Abbas, N.A.H. Al-Aaraji et al., Controlling the morphological, optical and dielectric characteristics of PS/SiC/CeO2 nanostructures for nanoelectronics and optics fields. J. Inorg. Organomet. Polym. 33, 1–9 (2023). https://doi.org/10.1007/s10904-022-02485-9

    Article  CAS  Google Scholar 

  90. A. Hashim, A. Hadi, M.H. Abbas, Fabrication and unraveling the morphological, optical and electrical features of PVA/SnO2/SiC nanosystem for optics and nanoelectronics applications. Opt. Quant. Electron. 55, 642 (2023). https://doi.org/10.1007/s11082-023-04929-z

    Article  CAS  Google Scholar 

  91. A. Hashim, A. Hadi, N.A. Al-Aaraji, Fabrication and augmented electrical and optical characteristics of PMMA/CoFe2O4/ZnCoFe2O4 hybrid nanocomposites for quantum optoelectronics nanosystems. Opt. Quant. Electron. 55, 716 (2023). https://doi.org/10.1007/s11082-023-04994-4

    Article  CAS  Google Scholar 

  92. A.A. Al-Muntaser, R.A. Pashameah, A. Saeed et al., Boosting the optical, structural, electrical, and dielectric properties of polystyrene using a hybrid GNP/Cu nanofiller: novel nanocomposites for energy storage applications. J. Mater. Sci. Mater. Electron. 34, 678 (2023). https://doi.org/10.1007/s10854-023-10104-7

    Article  CAS  Google Scholar 

  93. A.M. Salem, A.R. Mohamed, A.Y. Yassin, The effect of low concentrations of polypyrrole on the structural, thermal, and dielectric characteristics of CMC/PPy blends. J. Mater. Sci. Mater. Electron. 34, 1522 (2023). https://doi.org/10.1007/s10854-023-10938-1

    Article  CAS  Google Scholar 

  94. A. Hashim, A. Hadi, M.H. Abbas, Synthesis and Unraveling the morphological and optical features of PVP-Si3N4–Al2O3 Nanostructures for optical and renewable energies fields. SILICON 15, 6431–6438 (2023). https://doi.org/10.1007/s12633-023-02529-w

    Article  CAS  Google Scholar 

  95. H.K. Jaafar, A. Hashim, B.H. Rabee, Synthesis and boosting the morphological and optical characteristics of SiC/SrTiO3 nanomaterials doped PMMA/PEO for tailored optoelectronics fields. SILICON (2023). https://doi.org/10.1007/s12633-023-02706-x

    Article  Google Scholar 

  96. A. Hashim, S.M. Alshrefi, H.H. Abed et al., Synthesis and boosting the structural and optical characteristics of PMMA/SiC/CdS hybrid nanomaterials for future optical and nanoelectronics applications. J. Inorg. Organomet. Polym. (2023). https://doi.org/10.1007/s10904-023-02866-8

    Article  Google Scholar 

  97. W.O. Obaid, A. Hashim, Synthesis and augmented optical properties of PC/SiC/TaC hybrid nanostructures for potential and photonics fields. SILICON 14, 11199–11207 (2022). https://doi.org/10.1007/s12633-022-01854-w

    Article  CAS  Google Scholar 

  98. Z. Al-Ramadhan, A. Hashim, A.J. Kadham, Algidsawi, The DC electrical properties of (PVC-Al2O3) composites. AIP Conf. Proc. (2011). https://doi.org/10.1063/13663109

    Article  Google Scholar 

  99. A. Hashim, A. Hadi, H. Ibrahim et al., Fabrication and boosting the morphological and optical properties of PVP/SiC/Ti nanosystems for tailored renewable energies and nanoelectronics fields. J. Inorg. Organomet. Polym. (2023). https://doi.org/10.1007/s10904-023-02908-1

    Article  Google Scholar 

  100. H. Abduljalil, A. Hashim, A. Jewad, The effect of addition titanium dioxide on electrical properties of poly-methyl methacrylate. Eur. J. Sci. Res. 63(2), 231–235 (2011)

    Google Scholar 

  101. S. Mahendia, A.K. Tomar, S. Kumar, Electrical conductivity and dielectric spectroscopic studies of PVA–Ag nanocomposite films. J. Alloys Comp. 508(2), 406–411 (2010). https://doi.org/10.1016/j.jallcom.2010.08.075

    Article  CAS  Google Scholar 

  102. H.A.J. Hussien, A. Hashim, Synthesis and exploring the structural, electrical and optical characteristics of PVA/TiN/SiO2 Hybrid nanosystem for photonics and electronics nanodevices. J. Inorg. Organomet. Polym. 33, 2331–2345 (2023). https://doi.org/10.1007/s10904-023-02688-8

    Article  CAS  Google Scholar 

  103. M.H. Meteab, A. Hashim, B.H. Rabee, Controlling the structural and dielectric characteristics of PS-PC/Co2O3–SiC hybrid nanocomposites for nanoelectronics applications. SILICON 15, 251–261 (2023). https://doi.org/10.1007/s12633-022-02020-y

    Article  CAS  Google Scholar 

  104. M.A. Habbeb, A. Hashim, A.-R.K. AbidAli, The dielectric properties for (PMMA-LiF) composites. Eur. J. Sci. Res. 61(3), 367–371 (2011)

    Google Scholar 

  105. M.H. Meteab, A. Hashim, B.H. Rabee, Synthesis and characteristics of SiC/MnO2/PS/PC quaternarynanostructures for advanced nanodielectrics fields. SILICON 15, 1609–1620 (2023). https://doi.org/10.1007/s12633-022-02114-7

    Article  CAS  Google Scholar 

  106. E.M. Abdallah, G.M. Asnag, M.A. Morsi, M. Aljohani, A.N. Albalwa, A.Y. Yassin, Polym. Eng. Sci. 63(7), 1974 (2023). https://doi.org/10.1002/pen.26339

    Article  CAS  Google Scholar 

  107. A. Hashim, A. Hadi, A novel piezoelectric materials prepared from (carboxymethyl cellulose-starch) blend-metal oxide nanocomposites. Sens. Lett. (2017). https://doi.org/10.1166/sl.2017.3910

    Article  Google Scholar 

  108. H.A.J. Hussien et al., J. Phys. Conf. Ser. 1818, 012186 (2021). https://doi.org/10.1088/1742-6596/1818/1/012186

    Article  CAS  Google Scholar 

  109. A. Hashim, A. Hadi, synthesis and characterization of novel piezoelectric and energy storage nanocomposites: biodegradable materials–magnesium oxide nanoparticles. Ukr. J. Phys. (2017). https://doi.org/10.15407/ujpe62.12.1050

    Article  Google Scholar 

  110. A.G. Hadi et al., J. Phys. Conf. Ser. 1879, 032109 (2021). https://doi.org/10.1088/1742-6596/1879/3/032109

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Acknowledgment to University of Babylon.

Funding

No funding.

Author information

Authors and Affiliations

Authors

Contributions

HKJ, AH and BHR: wrote the main manuscript text, prepared figures and reviewed the manuscript.

Corresponding author

Correspondence to Ahmed Hashim.

Ethics declarations

Conflict of interest

No conflict of interest.

Research involving human and animal rights

The Research is not involving the studies on human or their data.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jaafar, H.K., Hashim, A. & Rabee, B.H. Fabrication and unraveling the morphological, structural, and dielectric features of PMMA-PEO-SiC–BaTiO3 promising quaternary nanocomposites for multifunctional nanoelectronics applications. J Mater Sci: Mater Electron 35, 128 (2024). https://doi.org/10.1007/s10854-024-11924-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-11924-x

Navigation