Log in

Strategies for dislocation density reduction in CdTe epilayers grown directly on (211) Si substrates using MOVPE

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Two different techniques, namely in-situ cycle annealing and post-growth patterning and annealing, were studied to reduce dislocation density in thick CdTe epilayers grown directly on (211) Si substrates using metal organic vapor phase epitaxy (MOVPE) for their applications in X-ray, gamma ray detector development. During in-situ annealing, it was observed that annealing initiated at a later stage of growth reduced the dislocation density more effectively than annealing initiated at the early growth stage. Nonetheless, in both cases, the dislocation density was reduced compared to the unannealed samples of similar thicknesses. On the other hand, the post-growth patterning of CdTe/Si into square islands, and subjecting these patterned samples to annealing was found to be more effective in reducing dislocations compared to the in-situ whole wafer annealing. However, subsequent growth of CdTe on the patterned and annealed samples to achieve thicker epilayers resulted rough surface, making them unsuitable for detector development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Q. Jiang, A.W. Brinkman, B.J. Cantwell, J.T. Mullins, F. Dierre, A. Basu, P. Veermani, P. Sellin, J. Electron. Mater. 38, 1548 (2009)

    Article  CAS  Google Scholar 

  2. K. Iso, Y. Gokudan, M. Shiraishi, M. Nishikado, H. Murakami, A. Koukitu, J. Cryst. Growth. 506, 185 (2019)

    Article  CAS  Google Scholar 

  3. R. Pandey, J. Drayton, C. Gregory, N.M. Kumar, K. Tyler, R. King, J. Sites, 47th IEEE Photovoltaic Specialists Conference, pp. 1326–1329 (2020). https://doi.org/10.1109/PVSC45281.2020.9300571

  4. J.W. Garland, T. Biegala, M. Carmody, C. Gilmore, S. Sivananthan, J. Appl. Phys. 109, 102425 (2011)

    Article  Google Scholar 

  5. S.R. Rao, S.S. Shintri, J.K. Markunas, R.N. Jacobs, I.B. Bhat, J. Electron. Mater. 40, 1790 (2011)

    Article  CAS  Google Scholar 

  6. M. Reddy, J.M. Peterson, T. Vang, J.A. Franklin, M.F. Vilela, K. Olsson, E.A. Patten, W.A. Radford, J.W. Bangs, L. Melkonian, E.P.G. Smith, D.D. Lofgreen, S.M. Johnson, J. Electron. Mater. 40, 1706 (2011)

    Article  CAS  Google Scholar 

  7. Y. Chen, S. Simingalam, G. Brill, P. Wijewarnasuriya, N. Dhar, J.J. Kim, D.J. Smith, J. Electron. Mater. 41, 2917 (2012)

    Article  CAS  Google Scholar 

  8. I.B. Bhat, S.R. Rao, S. Shintri, R.N. Jacobs, Phys. Status Solidi C 9, 1712 (2012)

    Article  CAS  Google Scholar 

  9. T. Seldrum, R. Bommena, L. Samain, J. Dumont, S. Sivananthan, R. Sporken, J. Vac. Sci. Technol. B 26, 1105 (2008)

    Article  CAS  Google Scholar 

  10. Y. Chen, S. Farrell, G. Brill, P. Wijewarnasuriya, N. Dhar, J. Cryst. Growth. 310, 5303 (2008)

    Article  CAS  Google Scholar 

  11. G. Brill, S. Farrell, Y.P. Chen, P.S. Wijewarnasurya, M.V. Rao, J.D. Benson, N. Dhar, J. Electron. Mater. 39, 967 (2010)

    Article  CAS  Google Scholar 

  12. S. Simingalam, J. Pattison, Y. Chen, P. Wijewarnasuriya, M.V. Rao, J. Electron. Mater. 45, 4668 (2016)

    Article  CAS  Google Scholar 

  13. A.J. Stoltz, J.D. Benson, M. Carmody, S. Farrell, P.S. Wijewarnasuriya, G. Brill, R. Jacobs, Y. Chen, J. Electron. Mater. 40, 1785 (2011)

    Article  CAS  Google Scholar 

  14. W.W. Pan, R.J. Gu, Z.K. Zhang, W. Lei, G.A. Umana-Membreno, D.J. Smith, J. Anotoszewski, L. Faraone, J. Electron. Mater. 51, 4869 (2022)

    Article  CAS  Google Scholar 

  15. Y. Du, B. Xu, G. Wang, Y. Miao, Z. Li, Z. Kong, Y. Dong, W. Wang, H.H. Radamson, Nanomaterials 12, 741 (2022)

    Article  CAS  Google Scholar 

  16. M. Niraula, K. Yasuda, A. Watanabe, Y. Kai, H. Ichihashi, W. Yamada, H. Oka, T. Yoneyama, H. Nakashima, T. Nakanishi, K. Matsumoto, D. Katoh, Y. Agata, IEEE Trans. Nucl. Sci. 56, 836 (2009)

    Article  CAS  Google Scholar 

  17. B.S. Chaudhari, H. Goto, M. Niraula, K. Yasuda, J. Appl. Phys. 130, 055302 (2021)

    Article  CAS  Google Scholar 

  18. M. Niraula, K. Yasuda, J. Ozawa, T. Yamaguchi, S. Tsubota, T. Mori, Y. Agata, IEEE Trans. Nucl. Sci. 65, 2325 (2018)

    Article  CAS  Google Scholar 

  19. B.S. Chaudhari, M. Niraula, Y. Takagi, R. Okumura, K.P. Sharma, T. Maruyama, J. Electron. Mater. 52, 3431 (2023)

    Article  CAS  Google Scholar 

  20. W.J. Everson, C.K. Ard, J.L. Sepich, B.E. Dean, G.T. Neugebauer, H.F. Schaake, J. Electron. Mater. 24, 505 (1995)

    Article  CAS  Google Scholar 

  21. S. Farrell, M.V. Rao, G. Brill, Y. Chen, P. Wijewarnasuriya, N. Dhar, D. Benson, K. Harris, J. Electron. Mater. 40, 1727 (2011)

    Article  CAS  Google Scholar 

  22. D.P. Halliday, M.D.G. Potter, J.T. Mullins, A.W. Brinkman, J. Cryst. Growth. 220, 30 (2000)

    Article  CAS  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to this work.

Corresponding author

Correspondence to M. Niraula.

Ethics declarations

Conflict of interest

The authors have no conflicts to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niraula, M., Chaudhari, B.S., Okumura, R. et al. Strategies for dislocation density reduction in CdTe epilayers grown directly on (211) Si substrates using MOVPE. J Mater Sci: Mater Electron 35, 31 (2024). https://doi.org/10.1007/s10854-023-11842-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11842-4

Navigation