Log in

Exploration of structural, thermal, transport, ferroelectric, and catalytic nature of YbCrO3 and YbCr0.95Ni0.05O3 perovskites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

A Correction to this article was published on 02 July 2024

This article has been updated

Abstract

This study comprises the comprehensive investigations done on the structural, morphological, thermal, electrical, dielectric, and ferroelectric properties of YbCrO3 and YbCr0.95Ni0.05O3 perovskites prepared by the sol–gel autocombustion method. The functional groups accessible in the prepared sample were confirmed using the Fourier transform infrared (FTIR) spectrum. The particle size/shape, distribution, and morphology of these compounds were studied by means of transmission electron microscopy (TEM). The thermal properties have been investigated to study the thermal stability and physical change, such as phase transitions, that occur in these samples contingent on the temperature. To investigate the mechanism of electrical transport in this system, we have studied temperature-dependent dc electrical resistivity in the temperature range of 35–190 °C. The electrical resistivity of the samples declined exponentially with an increase in temperature, indicating the semiconducting behavior in the studied temperature range. At higher temperatures, the dielectric peak in pristine sample was found to be broad, reduced by the increase of the frequency and swings to elevated degrees as frequency surges, which is similar to the diffuse phase transition as observed in relaxor materials. These samples also exhibit a typical hysteresis loop, confirming the ferroelectric nature of these compounds at ambient temperature. The photocatalytic activity of YbCrO3 and YbCr0.95Ni0.05O3 perovskites was inspected by means of the photo-degradation of Rose Bengal (RB) dye under UV light irradiation. These results indicate that the catalytic performance of the parent compound can be enhanced by substituting Ni at the Cr locations in YbCrO3 compound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Data availability

Data will be made available by the corresponding author on reasonable request.

Change history

References

  1. N.A. Hill, Why are there so few magnetic ferroelectrics. J. Phys. Chem. B 104, 6694–6709 (2000)

    CAS  Google Scholar 

  2. K. Omri, I. Najeh, S. Mnefgui, N. Alonizan, S. Gouadria, Microstructure, AC conductivity and complex modulus analysis of Ca-ZnO nanoparticles for potential optoelectronic applications. Mater. Sci. Eng. B 297, 116738 (2023)

    CAS  Google Scholar 

  3. K. Omri, S. Gouadria, Dielectric investigation and effect of low copper do** on optical and morphology properties of ZO-Cu nanoparticles. J. Mater. Sci. 32, 17021–17031 (2021)

    CAS  Google Scholar 

  4. K. Omri, I. Najeh, L. El Mir, Influence of annealing temperature on the microstructure and dielectric properties of ZnO nanoparticles. Ceram. Int. 42, 8940–8948 (2016)

    CAS  Google Scholar 

  5. W. Eerenstein, N.D. Mathur, J.F. Scott, Multiferroic and magnetoelectric materials. Nature 442, 759–765 (2006)

    CAS  PubMed  Google Scholar 

  6. W. Prellier, P. Singh, P. Murugavel, The single-phase multiferroic oxides: from bulk to thin film. J. Phys. Condens. Matter 17, R803 (2005)

    CAS  Google Scholar 

  7. S. Cheong, M. Maxim, Multiferroics: a magnetic twist for ferroelectricity. Nat. Mater. 6, 13–20 (2007)

    CAS  PubMed  Google Scholar 

  8. J. Li, K. Hirofumi, W. Satoshi, T. Takaaki, K. Hitoshi, Dielectric relaxation in gigahertz region and phase transition of BaTiO3-based ceramics. J. Appl. Phys. 100, 024106 (2006)

    Google Scholar 

  9. A. Jaiswal, R. Das, K. Vivekanand, T. Maity, P.M. Abraham, S. Adyanthaya, P. Poddar, Magnetic and dielectric properties and Raman spectroscopy of GdCrO3 nanoparticles. J. Appl. Phys. 107, 013912 (2010)

    Google Scholar 

  10. A.T. Apostolov, I.N. Apostolova, J.W. Wesselinowa, Theory of magnetic field control on polarization in multiferroic RCrO3 compounds. Eur. Phys. J. B. 88, 1–9 (2015)

    CAS  Google Scholar 

  11. L.T. Tsymbal, Y.B. Bazaliy, V.N. Derkachenkob, V.I. Kamenev, G.N. Kakazei, F.J. Palomares, P.E. Wigen, Magnetic and structural properties of spin-reorientation transitions in orthoferrites. J. Appl. Phys. 101, 123919 (2007)

    Google Scholar 

  12. B. Tiwari, A. Dixit, R. Naik, G. Lawes, M.S.R. Rao, Dielectric and optical phonon anomalies near antiferromagnetic ordering in LaCrO3: a possible near room temperature magnetodielectric system. Appl. Phys. Lett. 103, 152906 (2013)

    Google Scholar 

  13. N. Kojima, K. Tsushima, Recent progress in magneto-optics and research on its application. Low Temp. Phys. 28, 480–490 (2002)

    CAS  Google Scholar 

  14. B. Dalal, B. Sarkar, V.D. Ashok, S.K. De, Evolution of magnetic properties and exchange interactions in Ru doped YbCrO3. J. Phys. 28, 426001 (2016)

    Google Scholar 

  15. Y. Su, J. Zhang, Z. Feng, L. Li, B. Li, Y. Zhou, S. Cao, Magnetization reversal and Yb3+/Cr3+ spin ordering at low temperature for perovskite YbCrO3 chromites. J. Appl. Phys. 108, 013905 (2010)

    Google Scholar 

  16. J.R. Sahu, C.R. Serrao, N. Ray, U.V. Waghmare, C.N.R. Rao, Rare earth chromites: a new family of multiferroics. J. Mater. Chem. 17, 42–44 (2007)

    CAS  Google Scholar 

  17. B. Dalal, B. Sarkar, S. Rayaprol, M. Das, V. Siruguri, P. Mandal, S.K. De, Unveiling ferrimagnetic ground state, anomalous behavior of the exchange-bias field around spin reorientation, and magnetoelectric coupling in YbCr1−xFexO3 (01≤ x≤ 06). Phys. Rev. B 101, 144418 (2020)

    CAS  Google Scholar 

  18. C. Moure, J. Tartaj, A. Moure, O. Peña, Crystalline and magnetic properties of Er and Yb chromites modified by Mn and Ca cations. J. Eur. Ceram. Soc. 32, 3361–3368 (2012)

    CAS  Google Scholar 

  19. H. **ong, G.J. Zhang, J.Y. Zheng, Y.Q. Jia, Synthesis, crystal structure and electric conductivity of La0.9Ca0.1Cr0.5B0.5O3 (B= Mn, Fe, Ni). Mater. Lett. 51, 61–67 (2001)

    CAS  Google Scholar 

  20. S.P. Simner, J.S. Hardy, J.W. Stevenson, Sintering and properties of mixed lanthanide chromites. J. Electrochem. Soc. 148, A351 (2001)

    CAS  Google Scholar 

  21. S. Gupta, P. Singh, Nickel and titanium doubly doped lanthanum strontium chromite for high temperature electrochemical devices. J. Power. Sources 306, 801–811 (2016)

    CAS  Google Scholar 

  22. M.M. Barroso-Quiroga, A.E. Castro-Luna, Catalytic activity and effect of modifiers on Ni-based catalysts for the dry reforming of methane. Int. J. Hydrogen Energy 35, 6052–6056 (2010)

    CAS  Google Scholar 

  23. H. Özdemir, M.F. Öksüzömer, M.A. Gürkaynak, Preparation and characterization of Ni based catalysts for the catalytic partial oxidation of methane: effect of support basicity on H2/CO ratio and carbon deposition. Int. J. Hydrogen Energy 35, 12147–12160 (2010)

    Google Scholar 

  24. A.A. Qahtan, S. Husain, W. Khan, The effect of Ni do** on the structural, optical and dielectric properties of nanocrystalline YbCrO3. J. Phys. Chem. Solids 159, 110280 (2021)

    CAS  Google Scholar 

  25. A. Athawale, P. Desai, Silver doped lanthanum chromites by microwave combustion method. Ceram. Int. 37, 3037–3043 (2011)

    CAS  Google Scholar 

  26. G.V.S. Rao, C.N.R. Rao, Infrared and electronic spectra of rare earth perovskites: orthochromites, manganites and ferrites. Appl. Spectrosc. 24, 436–445 (1970)

    CAS  Google Scholar 

  27. I. Parkin, A. Komarov, Q. Fang, Alternative solid-state routes to mixed metal oxides (LnCrO3, LnFeO3). Polyhedron 15, 3117–3121 (1996)

    CAS  Google Scholar 

  28. P. Thiruramanathan, A. Marikani, D. Madhavan, S. Bharadwaj, A.M. Awasthi, Influence of calcination temperature on sol – gel synthesized single-phase bismuth titanate for high dielectric capacitor applications. Int. J. Mater. Res. 107(5), 484–492 (2016)

    CAS  Google Scholar 

  29. A.A. Qahtan, S. Husain, A. Somvanshi, M. Fatema, W. Khan, Investigation of alteration in physical properties of dysprosium orthochromite instigated through cobalt do**. J. Alloys Compd. 843, 155637 (2020)

    CAS  Google Scholar 

  30. A.A. Qahtan, S. Husain, N. Zarrin, A. Somvanshi, M. Fatema, W. Khan, Raman scattering, electronic transport and dielectric features of Co-doped DyCrO3. J. Mater. Sci. 32, 15108–15133 (2021)

    CAS  Google Scholar 

  31. M. Arshad, M. Abushad, S. Husain, W. Khan, Investigation of structural, optical and electrical transport properties of yttrium doped La0.7Ca0.3MnO3 perovskites. Electron. Mater. Lett. 16, 321–331 (2020)

    CAS  Google Scholar 

  32. A.K. Tripathi, H.B. Lal, Electrical transport in rare-earth orthochromites. Mater. Res. Bull. 15, 233 (1980)

    CAS  Google Scholar 

  33. V.G. Nair, A. Das, V. Subramanian, P.N. Santhosh, Magnetic structure and magnetodielectric effect of YFe0.5Cr0.5O3. J. Appl. Phys. 113, 21 (2013)

    Google Scholar 

  34. W. Khan, A.H. Naqvi, M. Gupta, S. Husain, R. Kumar, Small polaron hop** conduction mechanism in Fe doped LaMnO3. J. Chem. Phys. 135, 054501 (2011)

    PubMed  Google Scholar 

  35. M. Viret, L. Ranno, J.M.D. Coey, Colossal magnetoresistance of the variable range hop** regime in the manganites. J. Appl. Phys. 81, 4964 (1997)

    CAS  Google Scholar 

  36. S. Huang, G. Zerihun, Z. Tian, S. Yuan, G. Gong, C. Yin, Magnetic exchange bias and high-temperature giant dielectric response in SmCrO3 ceramics. Ceram. Int. 40, 13937–13943 (2014)

    CAS  Google Scholar 

  37. A.A.A. Qahtan, A. Somvanshi, S. Manzoor, M. Fatema, M. Abushad, N.Z. Zarrin, S. Husain, Exploration of temperature driven conduction process and ferroelectric properties of Mn doped GdCrO3. Phys. Scr. 98, 125932 (2023)

    Google Scholar 

  38. T. Patri, P. Justin, P.D. Babu, A. Ghosh, Analysis of dielectric and magnetic phase transitions in Yb (Fe0.5Cr0.5)O3 bulk perovskite. Appl. Phys. A 125, 1–12 (2019)

    CAS  Google Scholar 

  39. A.A. Bokov, S. Lang, Recent progress in relaxor ferroelectrics with perovskite structure. J. Mater. Sci. 41, 31–52 (2006)

    CAS  Google Scholar 

  40. P. Tirupathi, P. Justin, K. Prabahar, M. Poster, Broad temperature dependent magnetic and dielectric spectroscopy study of Dy(Fe0.5Cr0.5)O3 multiferroic ceramics. J. Alloys Compd. 731, 411–417 (2018)

    CAS  Google Scholar 

  41. H. Search, C. Journals, A. Contact, M. Iopscience, I.P. Address, Observation of relaxor ferroelectricity and multiferroic behaviour in nanoparticles of the ferromagnetic semiconductor La2NiMnO6. J. Phys. 24, 295902 (2012)

    Google Scholar 

  42. C. Mao, X. Dong, G. Wang, S. Cao, C. Yao, K. Uchino, Microscopic region effect on the dielectric property of the diffused phase transition ferroelectrics: a reasonable and effective diffuseness characterizing parameter. J. Am. Ceram. Soc. 93, 4011–4014 (2010)

    CAS  Google Scholar 

  43. S.Q. Jan, M. Usman, M. Naveed-Ul-Haq, A. Mumtaz, A study of relaxation effects in (1–x) BaZr0.2Ti0.8O3−xBa0.7Ca0.3TiO3 (x= 0.3, 0.35, 0.4) ferroelectric ceramics. J. Alloys Compd. 735, 1893–1900 (2018)

    CAS  Google Scholar 

  44. M.R. Shah, A.A. Hossain, Structural, dielectric and complex impedance spectroscopy studies of lead free Ca0.5+ xNd0.5–x(Ti0.5Fe0.5)O3. J. Mater. Sci. Technol. 29, 323–329 (2013)

    CAS  Google Scholar 

  45. O. Bidault, M. Maglione, M. Actis, M. Kchikech, B. Salce, Polaronic relaxation in perovskites. Phys. Rev. B 52, 4191–4197 (1995)

    CAS  Google Scholar 

  46. A.A. Qahtan, S. Husain, A. Somvanshi, W. Khan, Y.K. Manea, Influence of Mn do** on dielectric properties, conduction mechanism and photocatalytic nature of gadolinium-based orthochromites. J. Mater. Sci. 31, 9335–9351 (2020)

    CAS  Google Scholar 

  47. K. Uchino, Ferroelectric Devices (Marcel Dekker Inc, New York, 2000)

    Google Scholar 

  48. Z. Sun, L. Li, J. Li, H. Zheng, W. Luo, Influence of Nb2O5 addition on dielectric properties and diffuse phase transition behavior of BaZr0.2Ti0.8O3 ceramics. Ceram. Int. 42, 10833–10837 (2016)

    CAS  Google Scholar 

  49. A. Durán, A.M. Arévalo-López, E. Castillo-Martínez, M. García-Guaderrama, E. Moran, M.P. Cruz, M.A. Alario-Franco, Magneto-thermal and dielectric properties of biferroic YCrO3 prepared by combustion synthesis. J. Solid State Chem. 183, 1863–1871 (2010)

    Google Scholar 

  50. N. Zarrin, S. Husain, D.D. Gaur, A. Somvanshi, M. Fatema, Dopant incited alterations in structural, morphological, optical, and dielectric properties of Er-doped LaCrO3. J. Mater. Sci. 31, 3466–3478 (2020)

    CAS  Google Scholar 

  51. M. Pecovska-Gjorgjevich, S. Aleksovska, S. Dimitrovska-Lazova, M. Marinšek, The role of Cr/Co substitution on dielectric properties of gadolinium orthochromite. Phys. Scr. 91, 045805 (2016)

    Google Scholar 

  52. R. Nongjai, S. Khan, K. Asokan, H. Ahmed, I. Khan, Magnetic and electrical properties of In doped cobalt ferrite nanoparticles. J. Appl. Phys. 112, 084321 (2012)

    Google Scholar 

  53. A.B.J. Kharrat, M. Bourouina, N. Moutia, K. Khirouni, W. Boujelben, Gd do** effect on impedance spectroscopy properties of sol-gel prepared Pr0. 5−xGdxSr0. 5MnO3 (0≤ x≤ 0.3) perovskites. J. Alloys Compd. 741, 723–733 (2018)

    Google Scholar 

  54. R. Mguedla, A.B.J. Kharrat, M. Saadi, K. Khirouni, N. Chniba-Boudjada, W. Boujelben, Structural, electrical, dielectric and optical properties of PrCrO3 ortho-chromite. J. Alloy. Compd. 812, 152130 (2020)

    CAS  Google Scholar 

  55. Z. Raddaoui, S. El Kossi, J. Dhahri, N. Abdelmoula, K. Taibi, Study of diffuse phase transition and relaxor ferroelectric behavior of Ba0.97Bi0.02Ti0.9Zr0.05Nb0.04O3 ceramic. RSC Adv. 9, 2412–2425 (2019)

    CAS  PubMed  PubMed Central  Google Scholar 

  56. J. Wu, C.-W. Nan, Y. Lin, Y. Deng, Giant dielectric permittivity observed in Li and Ti doped NiO. Phy. Rev. Lett. 89, 217601 (2002)

    Google Scholar 

  57. A. Durán, J.M. Jiménez, M. Solórzano, R. Falconi, Improvement of the ferroelectric properties of Ti-doped YCrO3 ceramic. J. Phys. Chem. Solids 123, 228–234 (2018)

    Google Scholar 

  58. M. Fatema, A. Bajpai, A. Somvanshi, S. Manzoor, M. Arshad, N. Zarrin, S. Husain, Study of structural correlations with temperature dependent dielectric response and ferroelectric behavior for (Sr, Mn) co-doped BaTiO3. J. Mater. Sci. 33, 6329–6353 (2022)

    CAS  Google Scholar 

  59. W. Bai, L. Li, W. Wang, B. Shen, J. Zhai, Phase diagram and electrostrictive effect in BNT-based ceramics. Solid State Commun. 206, 22–25 (2015)

    CAS  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

Sample preparation, data collection and analysis, and writing and original draft preparation: AAAQ, data collection and analysis: NZ and MF, review and editing of the manuscript: WK, conceptualization and review and editing of the manuscript: SH.

Corresponding authors

Correspondence to Aref A. A. Qahtan or Shahid Husain.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

This manuscript is the authors’ own original work, which has not been previously published elsewhere. All sources used are properly disclosed and all authors have personally and actively involved in substantial work leading to this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qahtan, A.A.A., Zarrin, N., Fatema, M. et al. Exploration of structural, thermal, transport, ferroelectric, and catalytic nature of YbCrO3 and YbCr0.95Ni0.05O3 perovskites. J Mater Sci: Mater Electron 35, 148 (2024). https://doi.org/10.1007/s10854-023-11779-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11779-8

Navigation