Log in

Epoxy resin/POSS nanocomposites with low permittivity and excellent mechanical properties

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Low permittivity materials are crucial for achieving high integration in circuit boards. While epoxy resins (EP) have excellent comprehensive properties, their permittivity does not meet the requirements for electronic packaging applications. In this study, we incorporated two types of Polyhedral oligomeric silsesquioxane (POSS) into EP and compared their effects on the dielectric, thermal, and mechanical properties of EP/POSS composites. The results demonstrate that EP/Ge-POSS composites exhibit superior dielectric properties compared to EP/Ao-POSS composites. Notably, the permittivity of EP/Ge-POSS composites is significantly reduced to 2.8, a 19% decrease compared to neat EP. Additionally, the mechanical properties of EP/Ge-POSS composites show remarkable improvement. For instance, the impact strength, bending strength, and tensile strength increase by 42.3%, 28.9%, and 18.9%, respectively, in EP/Ge-POSS-5wt% composites, compared to pure EP. The addition of Ge-POSS nano-particles has minimal impact on the thermal properties of the composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The data that support the findings of this study are not openly available and are available from the corresponding author upon reasonable request.

References

  1. N. Hafezeh, W. **n, H. Yuan, Carbon fiber-reinforced composites based on an epoxy resin containing Schiff base with intrinsic anti-flammability, good mechanical strength and recyclability. Eur. Polym. J. 194, 112166 (2023)

    Article  Google Scholar 

  2. P.J. Yang et al., Effect of coal tar pitch modification on the structure and char yield of pyrolysis epoxy resin carbons. Diam. Relat. Mater. 137, (2023)

  3. F. Zhu et al., Synthesis and curing properties of multifunctional castor oil-based epoxy resin. Polym. Test. 122, 108017 (2023)

    Article  CAS  Google Scholar 

  4. S. Guanqing et al., Shrinkage stress of thermal cured epoxy resin reduced by addition of functional hollow microspheres. Prog. Org. Coat. 178, 107466 (2023)

    Article  Google Scholar 

  5. L. Haichuan et al., Study on a new cementitious material waterborne modified epoxy resin under sealed conditions for oil and gas wells. Constr. Build. Mater. 387, 131588 (2023)

    Article  Google Scholar 

  6. H. Du et al., Surfactant-free emulsion of epoxy resin/sodium alginate for achieving robust underwater superoleophobic coating via a combination of phase separation and biomineralization. J. Colloid Interface Sci. (2023). https://doi.org/10.1016/j.jcis.2023.03.166

    Article  Google Scholar 

  7. B. Yunfeng et al., Effects of MOFs-derived Ni@NC/CNT nanocomposites on impermeability and microwave absorption of modified epoxy resin coatings on cement-based materials. Constr. Build. Mater. 383, 131337 (2023)

    Article  Google Scholar 

  8. C. Leistner et al., Shrinkage behavior of Araldite epoxy resin using Archimedes’ principle. Polym. Test. (2018). https://doi.org/10.1016/j.polymertesting.2018.03.031

    Article  Google Scholar 

  9. C.F. Zhao et al., Compression mechanics for carbon-fiberreinforced epoxy resin composites under inplane and out-of-plane Quasi-Static and dynamic loadings. Mech. Compos. Mater. (2023). https://doi.org/10.1007/s11029-023-10112-y

    Article  Google Scholar 

  10. J.A. Tenreiro Machado, A.M. Lopes, R. de Camposinhos, Fractional-order modelling of epoxy resin. Philos. Trans. R. Soc. A (2020). https://doi.org/10.1098/rsta.2019.0292

    Article  Google Scholar 

  11. A. Sut et al., Synergy in flame-retarded epoxy resin. J. Therm. Anal. Calorim. (2016). https://doi.org/10.1007/s10973-016-5934-4

    Article  Google Scholar 

  12. J.C. Capricho, B. Fox, N. Hameed, Multifunctionality in epoxy resins. Polym. Rev. (2019). https://doi.org/10.1080/15583724.2019.1650063

    Article  Google Scholar 

  13. C. Niu et al., Mechanical properties of epoxy resin composites modified by epoxy styrene-butadiene latex. J. Appl. Polym. Sci. (2023). https://doi.org/10.1002/app.54002

    Article  Google Scholar 

  14. A. Ahrens et al., Catalytic disconnection of C–O bonds in epoxy resins and composites. Nature (2023). https://doi.org/10.1038/s41586-023-05944-6

    Article  Google Scholar 

  15. X. Zhang et al., Epoxy resin/hollow glass microspheres composite materials with low dielectric constant and excellent mechanical performance. J. Appl Polym Sci. (2022). https://doi.org/10.1002/app.52787

    Article  Google Scholar 

  16. S. Wang et al., Nano-silica reinforced epoxy resin/nano-rubber composite material with a balance of stiffness and toughness. High Perform. Polym. (2021). https://doi.org/10.1177/0954008320988752

    Article  Google Scholar 

  17. H. Luo et al., Investigation of properties of nano-silica modified epoxy resin films and composites using RFI technology. Compos. Part B: Eng. 155, 288–298 (2018)

    Article  CAS  Google Scholar 

  18. M. Toselli et al., In situ thermal reduction of graphene oxide forming epoxy nanocomposites and their dielectric properties. Polym. Compos. 36(2), 294–301 (2015)

    Article  CAS  Google Scholar 

  19. A. Wolk et al., Graphene oxide as flexibilizer for epoxy amine resins. Prog. Org. Coat. (2018). https://doi.org/10.1016/j.porgcoat.2018.05.028

    Article  Google Scholar 

  20. M. Sabet et al., Impact of graphene oxide on epoxy resin characteristics. High Perform. Polym. (2020). https://doi.org/10.1177/0954008320943929

    Article  Google Scholar 

  21. L. Yuan et al., Preparation and properties of mullite-bonded porous fibrous mullite ceramics by an epoxy resin gel-casting process. Ceram. Int. (2017). https://doi.org/10.1016/j.ceramint.2017.01.062

    Article  Google Scholar 

  22. G. Feng et al., Pressure field assisted polycondensation nonaqueous precipitation synthesis of Mullite Whiskers and their application as epoxy resin reinforcement. Polymers (2019). https://doi.org/10.3390/polym11122007

    Article  Google Scholar 

  23. C. Pan et al., Enhanced through-plane thermal conductivity of PTFE composites with hybrid fillers of hexagonal boron nitride platelets and aluminum nitride particles. Compos. B Eng. 153, 1–8 (2018)

    Article  CAS  Google Scholar 

  24. Z. Wang et al., The investigation of the effect of filler sizes in 3D-BN skeletons on thermal conductivity of epoxy-based composites. Nanomaterials (2022). https://doi.org/10.3390/nano12030446

    Article  Google Scholar 

  25. C. Pan et al., Improved thermal conductivity and dielectric properties of hBN/PTFE composites via surface treatment by silane coupling agent. Compos. B Eng. 111, 83–90 (2017)

    Article  CAS  Google Scholar 

  26. Z. Wang et al., Simultaneously enhanced dielectric properties and through-plane thermal conductivity of epoxy composites with alumina and boron nitride nanosheets. Sci. Rep. (2021). https://doi.org/10.1038/s41598-021-81925-x

    Article  Google Scholar 

  27. C. Pan et al., Investigation of the through-plane thermal conductivity of polymer composites with in-plane oriented hexagonal boron nitride. Int. J. Heat Mass Transf. 120, 1–8 (2018)

    Article  CAS  Google Scholar 

  28. Y. Zhao et al., Facile preparation of graphene oxide for low-κ epoxy nanocomposites with improved thermal stability. J. Mater. Sci.: Mater. Electron. 31(1), 310–316 (2020)

    CAS  Google Scholar 

  29. Q. Lyu et al., Imidazolium Ionic liquid modified graphene oxide: as a reinforcing filler and catalyst in Epoxy Resin. Polymers 9(12), 447 (2017)

    Article  Google Scholar 

  30. J. Lu et al., Preparation and properties of Hollow Glass microspheres/dicyclopentadiene phenol epoxy resin composite materials. Materials (2023). https://doi.org/10.3390/ma16103768

    Article  Google Scholar 

  31. M. Wang et al., Progress in the synthesis of bifunctionalized polyhedral oligomeric silsesquioxane. Polymers (2019). https://doi.org/10.3390/polym11122098

    Article  Google Scholar 

  32. Y. Shi et al., Effect of POSS on the Dielectric properties of thermally aged epoxy resin insulating materials. IEEE Trans. Dielectr. Electr. Insul. (2022). https://doi.org/10.1109/TDEI.2022.3194492

    Article  Google Scholar 

  33. K. Mishra, G. Pandey, R.P. Singh, Enhancing the mechanical properties of an epoxy resin using polyhedral oligomeric silsesquioxane (POSS) as nano-reinforcement. Polym. Test. (2017). https://doi.org/10.1016/j.polymertesting.2017.06.031

    Article  Google Scholar 

  34. H. Chi et al., Enhancing the mechanical strength and toughness of epoxy resins with linear POSS nano-modifiers. Nanoscale Adv. (2022). https://doi.org/10.1039/D1NA00757B

    Article  Google Scholar 

  35. J.D. Lichtenhan, D.A. Hildebrandt, L.J. Lancaster, The thrombogenic activity of POSS silanols. Dalton Trans. (2017). https://doi.org/10.1039/C7DT00487G

    Article  Google Scholar 

  36. W. Huaming et al., Organic–Inorganic Polyimides with POSS Cages in the Main Chains: An Impact of POSS R Groups on Morphologies and Properties. ACS Appl. Polym. Mater. (2023)

  37. T. Hao et al., Preparation and characterization of polyurethane/POSS hybrid aqueous dispersions from mono-amino substituted POSS. Polym Bull (2016). https://doi.org/10.1007/s00289-016-1727-y

    Article  Google Scholar 

  38. P. Chang et al., A design of shape memory networks of poly(ε-caprolactone)s via POSS-POSS interactions. Polym. Adv. Technol. (2018). https://doi.org/10.1002/pat.4509

    Article  Google Scholar 

  39. H. Zhendong et al., SLA printing of POSS-containing, bio-based composites with low dielectric constant and shape-memory function. Compos. Commun. 39, 101566 (2023)

    Article  Google Scholar 

  40. J. Zhou et al., Study on the effects of soluble POSS on chain disentanglement in UHMWPE polymerization. Polymer (2022). https://doi.org/10.1016/j.polymer.2022.124561

    Article  Google Scholar 

  41. D. Chen et al., Porous NIR photoluminescent silicon nanocrystals-POSS composites. Adv. Funct. Mater. (2016). https://doi.org/10.1002/adfm.201601251

    Article  Google Scholar 

  42. N.T. Kilic et al., Compatibilization of PLA/PBAT blends by using Epoxy-POSS. J. Appl. Polym. Sci. (2018). https://doi.org/10.1002/app.47217

    Article  Google Scholar 

  43. T.F. Baumann et al., Synthesis and characterization of novel PDMS nanocomposites using POSS derivatives as cross-linking filler. J. Polym. Sci., Part A: Polym. Chem. 47(10), 2589–2596 (2009)

    Article  CAS  Google Scholar 

  44. A.H. Korayem et al., A review of dispersion of nanoparticles in cementitious matrices: Nanoparticle geometry perspective. Constr. Build. Mater. (2017). https://doi.org/10.1016/j.conbuildmat.2017.06.164

    Article  Google Scholar 

  45. G.-L. Zhu et al., Improving dam** properties and thermal stability of epoxy/polyurethane grafted copolymer by adding glycidyl POSS. Chin. J. Polym. Sci. 36(11), 1297–1302 (2018)

    Article  Google Scholar 

  46. Y. Xu et al., Greatly improving thermal stability of silicone resins by modification with POSS. Polym. Degrad. Stab. (2020). https://doi.org/10.1016/j.polymdegradstab.2020.109082

    Article  Google Scholar 

  47. L. Liu et al., A new mechanism for the low dielectric property of POSS nanocomposites: the key role of interfacial effect. Phys. Chem. Chem. Phys. 19(22), 14503–14511 (2017)

    Article  CAS  Google Scholar 

  48. Q. Jiang et al., A unique “cage–cage” shaped hydrophobic fluoropolymer film derived from a novel double-decker structural POSS with a low dielectric constant. J. Mater. Chem. C (2015). https://doi.org/10.1039/C5TC02432C

    Article  Google Scholar 

  49. J. Wang et al., Preparation of Low-k poly(dicyclopentadiene) nanocomposites with excellent comprehensive properties by adding larger POSS. Chem. Eng. J. (2022). https://doi.org/10.1016/j.cej.2022.135737

    Article  Google Scholar 

  50. J. ** effect on the properties of two-component crosslinked epoxy resin. J. Mol. Graph. Model. (2021). https://doi.org/10.1016/j.jmgm.2021.107961

    Article  Google Scholar 

  51. W. Jian et al., High-performance low-k poly(dicyclopentadiene) nanocomposites as achieved via reactive blending with norbornene-functionalized larger POSS. Macromol. Mater. Eng. (2023)

  52. X. Zeng et al., Structure-induced variation of thermal conductivity in epoxy resin fibers. Nanoscale (2017). https://doi.org/10.1039/C7NR03717A

    Article  Google Scholar 

  53. M.S. Windberger et al., Temperature-triggered/switchable thermal conductivity of epoxy resins. Polymers (2020). https://doi.org/10.3390/polym13010065

    Article  Google Scholar 

  54. T. Na et al., Enhanced thermal conductivity of fluorinated epoxy resins by incorporating inorganic filler. React. Funct. Polym. (2018). https://doi.org/10.1016/j.reactfunctpolym.2018.05.004

    Article  Google Scholar 

  55. C. Yue et al., Vitrimeric silicone composite with high thermal conductivity and high repairing efficiency as thermal interface materials. J. Colloid Interface Sci. 620, 273–283 (2022)

    Article  CAS  Google Scholar 

  56. T. Heid, M. Frechette, E. David, Enhanced electrical and thermal performances of nanostructured epoxy/POSS composites. IEEE Trans. Dielectr. Electr. Insul. 23(3), 1732–1742 (2016)

    Article  CAS  Google Scholar 

  57. Z. Zhang et al., Synthesis of eugenol-functionalized polyhedral oligomer silsesquioxane for low-k bis maleimide resin combined with excellent mechanical and thermal properties as well as its composite reinforced by silicon fiber. Chem. Eng. J. 439, 135740 (2022)

    Article  CAS  Google Scholar 

  58. H.P.P.V. Shanmugasundram, E. Jayamani, K.H. Soon, A comprehensive review on dielectric composites: classification of dielectric composites. Renew. Sust. Energy Rev. 157, 112075 (2022)

    Article  Google Scholar 

  59. Z. Geng et al., Ultra low dielectric constant soluble polyhedral oligomeric silsesquioxane (POSS)–poly(aryl ether ketone) nanocomposites with excellent thermal and mechanical properties. J. Mater. Chem. C 2(6), 1094–1103 (2013)

    Article  Google Scholar 

  60. Z. Chen et al., Conductive TiO2 nanorods via surface coating by antimony doped tin dioxide. Mater. Chem. Phys. 225, 181–186 (2019)

    Article  CAS  Google Scholar 

  61. C. **n et al., Synthesis of EP-POSS mixture and the properties of EP-POSS/epoxy, SiO2/epoxy, and SiO2/EP-POSS/epoxy nanocomposite. J. Appl. Polym. Sci. 130(2), 810–819 (2013)

    Article  CAS  Google Scholar 

  62. J.J. Chruściel, E. Leśniak, Modification of epoxy resins with functional silanes, polysiloxanes, silsesquioxanes, silica and silicates. Prog. Polym. Sci. 41, 67–121 (2015)

    Article  Google Scholar 

  63. N. Saba et al., A review on dynamic mechanical properties of natural fibre reinforced polymer composites. Constr. Build. Mater. 106, 149–159 (2016)

    Article  CAS  Google Scholar 

  64. Q. Sun et al., High performance epoxy resin with ultralow coefficient of thermal expansion cured by conformation-switchable multi-functional agent. Chem. Eng. J. (2022). https://doi.org/10.1016/j.cej.2022.138295

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the support of the National Natural Science Foundation of China (Grant No. 51673154 and No. 52273254) and the Fundamental Research Funds for the Central Universities (Grant Number: 2023-vb-001).

Funding

This work was supported by The National Natural Science Foundation of China,51673154,Chuanxi **ong, Fundamental Research Funds for Central Universities of the Central South University,2023-vb-001,the National Natural Science Foundation of China,52273254,Chuanxi **ong.

Author information

Authors and Affiliations

Authors

Contributions

All authors made equal contributions to researching data, discussion, and analysis of the content of the manuscript. KS: writing-original draft, visualization, data curation, investigation. XZ: visualization. HQ: methodology investigation, data curation, formal analysis. CD: writing-review & editing. XN, DC, RF: supervision. KS: conceptualization, funding acquisition, supervision, writing-review & editing. KS and XZ contributed equally to this work.

Corresponding author

Correspondence to Chuanxi **ong.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

Not applicable in this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, K., Zhang, X., Qin, H. et al. Epoxy resin/POSS nanocomposites with low permittivity and excellent mechanical properties. J Mater Sci: Mater Electron 35, 21 (2024). https://doi.org/10.1007/s10854-023-11758-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11758-z

Navigation