Log in

Citric acid mediated hydrothermal synthesis of LaMn1-xFexO3 nanoparticles for visible light-driven photocatalytic applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Citric acid mediated hydrothermal process was used to synthesise LaMn1−xFexO3 nanoparticles. The synthesised samples were characterised using TGA, XRD, FTIR, SEM, HRTEM, UV–Vis and XPS techniques. According to TGA study, 800 °C was considered to be the ideal temperature to ensure the crystallisation of LMO, LMFO, and LFO nanoparticles. XRD study shows that the impurity phase, La(OH)3 was disappeared when citric acid percentage is increased. The joint action of stretching vibrations of Mn–O and Fe–O was observed at 601 cm−1 for LaMn1−xFexO3 nanoparticles. SEM and TEM images show that Fe do** percentage over LaMnO3 influences the morphological features of LaMn1−xFexO3 nanoparticles. The bandgap energy of LaMn1−xFexO3 nanoparticles is between the bandgaps of LaMnO3 and LaFeO3, according to a UV–Vis spectroscopic investigation. The visible light photocatalytic activity of LaMn1−xFexO3, LaMnO3 and LaFeO3 nanoparticles was investigated. LaMn1−xFexO3 nanoparticles exhibited superior photodegradation of methyl orange (MO) dye compared to LaMnO3 and LaFeO3 nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

The datasets used and analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. R. Saravanan, V.K. Gupta, E. Mosquera, F. Gracia, V. Narayanan, A. Stephen, J. Saudi Chem. Soc. 19, 521–527 (2015). https://doi.org/10.1016/j.jscs.2015.06.001

    Article  Google Scholar 

  2. P.C. Dey, R. Das, Spectrochim. Acta A: Mol Biomol. Spectrosc. 231, 118122 (2020). https://doi.org/10.1016/j.saa.2020.118122

    Article  CAS  Google Scholar 

  3. Y. Hirami, Y.M. Hunge, N. Suzuki, V.R. González, T. Kondo, M. Yuasa, A. Fujishima, K. Teshima, C. Terashima, J. Colloid Interface Sci. 642, 829–836 (2023). https://doi.org/10.1016/j.jcis.2023.02.136

    Article  CAS  Google Scholar 

  4. A.A. Yadav, Y.M. Hunge, S.W. Kang, A. Fujishima, C. Terashima, Nanomaterials. 13, 338 (2023). https://doi.org/10.3390/nano13020338

    Article  CAS  Google Scholar 

  5. Y.M. Hunge, A.A. Yadav, S.W. Kang, H. Kim, J. Alloy Compd. 928, 167133 (2022). https://doi.org/10.1016/j.jallcom.2022.167133

    Article  CAS  Google Scholar 

  6. Y.M. Hunge, M.A. Mahadik, R.N. Bulakhe, Oxidative degradation of benzoic acid using spray deposited WO3/TiO2 thin films. J. Mater. Sci: Mater. Electron. 28, 17976–17984 (2017). https://doi.org/10.1007/s10854-017-7740-6

    Article  CAS  Google Scholar 

  7. Y.M. Hunge., A. Uchida, Y. Tominaga, Y. Fujii, A.A. Yadav, S.W. Kang, N. Suzuki, I. Shitanda, T. Kondo, M. Itagaki, Catalysts. 11, 460 (2021). https://doi.org/10.3390/catal11040460

    Article  CAS  Google Scholar 

  8. Y.M. Hunge, A.A. Yadav, S.W. Kang, S.J. Lim, H. Kim, J. Photochem. Photobiol. A: Chem. 434, 114250 (2023). https://doi.org/10.1016/j.jphotochem.2022.114250

    Article  CAS  Google Scholar 

  9. Y.M. Hunge, A.A. Yadav, S.W. Kang, B.M. Mohite, Encycl. Smart Mater 17, 5–7 (2022). https://doi.org/10.2174/1872210516666220304162429

    Article  CAS  Google Scholar 

  10. H. Cui, M. Zayat, D. Levy, J. Non-Crys, Solid. 352, 3035–3040 (2006). https://doi.org/10.1016/j.jnoncrysol.2006.03.062

    Article  CAS  Google Scholar 

  11. Y.K. Lakshmi, S. Manjunathrao, P.V. Reddy, J. Mat. Chem. Phys. 143, 983–990 (2014). https://doi.org/10.1016/j.matchemphys.2013.10.033

    Article  CAS  Google Scholar 

  12. N. Geetha, V.S. Kumar, D. Prakash, J. Phys. Che Biophys. 8, 1000273 (2018). https://doi.org/10.4172/2161-0398.1000273

    Article  CAS  Google Scholar 

  13. R. Meir, L. Vradman, J. Zana, M. Herskowitz, Mat. Chem. Phys. 231, 181–187 (2019). https://doi.org/10.1016/j.matchemphys.2019.04.034

    Article  CAS  Google Scholar 

  14. S. Priyatharshni, S.R. Kumar, C. Viswanathan, N. Ponpandian, J. Env Chem. Eng. 8, 104146 (2020). https://doi.org/10.1016/j.jece.2020.104146

    Article  CAS  Google Scholar 

  15. T.H. Tran, T.H. Phi, H.N. Nguyen, Results Phys. 19, 103417 (2020). https://doi.org/10.1016/j.rinp.2020.103417

    Article  Google Scholar 

  16. H.A.M. Rodriguez, K. Onyekachi, J. Alloy, Compd. 816, 152668 (2020). https://doi.org/10.1016/j.jallcom.2019.152668

    Article  CAS  Google Scholar 

  17. C. Chen, Y. He, Z. Du, H. Yuan, Y. Wu, J. Mater. Lett. 110, 264–266 (2013). https://doi.org/10.1016/j.matlet.2013.08.016

    Article  CAS  Google Scholar 

  18. C. Zeng, Y. He, C. Li, Y. Xu, Ceram. Int. 39, 5765–5769 (2013). https://doi.org/10.1016/j.ceramint.2012.12.094

    Article  CAS  Google Scholar 

  19. S. Dong, Y. Hou, Y. Yao, J. Am. Ceram. Soc. 93, 3814–3818 (2010). https://doi.org/10.1111/j.1551-2916.2010.03939.x

    Article  CAS  Google Scholar 

  20. J. Zheng, J. Liu, Cata. Today. 191, 146–153 (2012). https://doi.org/10.1016/j.cattod.2011.12.013

    Article  CAS  Google Scholar 

  21. X.L. Wang, D. Li, C.X. Shi, B. Li, T.Y. Cui, Z.D. Zhang, Phys. B 405, 1362–1368 (2010). https://doi.org/10.1016/j.physb.2009.12.001

    Article  CAS  Google Scholar 

  22. R.D. Toro, P. Hernandez, J. Mater. Lett. 107, 231–234 (2013). https://doi.org/10.1016/j.matlet.2013.05.139

    Article  CAS  Google Scholar 

  23. K. Mukhopadhyay, A.S. Mahapatra, P.K. Chakrabarti, J. Mag Mag Mat. 329, 133–141 (2013). https://doi.org/10.1016/j.jmmm.2012.09.063

    Article  CAS  Google Scholar 

  24. L. Li, X. Wang, Y. Zhang, Mater. Res. Bull. 50, 18–22 (2014). https://doi.org/10.1016/j.materresbull.2013.10.027

    Article  CAS  Google Scholar 

  25. H. Yang, J.X. Zhang, G.J. Lin, T. **an, J.L. Jiang, Adv. Powder Tec. 24, 242–245 (2013). https://doi.org/10.1016/j.apt.2012.06.009

    Article  CAS  Google Scholar 

  26. M. Shaterian, M. Enhessari, D. Rabbani, M. Asghari, M.S. Niasari, Appl. Surf. Sci. 318, 213–217 (2014). https://doi.org/10.1016/j.apsusc.2014.03.087

    Article  CAS  Google Scholar 

  27. P. Tang, Y. Tong, H. Chen, F. Cao, G. Pan, Curr. Appl. Phys. 13, 340–343 (2013). https://doi.org/10.1016/j.cap.2012.08.006

    Article  Google Scholar 

  28. X.D. Zhou, L.R. Pederson, Q. Cai, J. Appl. Phys. 99, 08M918 (2006). https://doi.org/10.1063/1.2176389

    Article  CAS  Google Scholar 

  29. M.J. Koponen, T. Venalainen, M. Suvanto, J. Mol, Cat. A: Chem. 258, 246–250 (2006). https://doi.org/10.1063/1.2176389

    Article  CAS  Google Scholar 

  30. M.A. Gilleo, Acta Cryst. 10, 16 (1957). https://doi.org/10.1107/S0365110X57000535

    Article  Google Scholar 

  31. D.V. Karpinsky, I.O. Troyanchuk, V.V. Sikolenko, J. Phys. : Condens. Matter 19, 036220 (2007). https://doi.org/10.1088/0953-8984/19/3/036220

    Article  CAS  Google Scholar 

  32. Z. Juan, L. lirong, W. Gui, Adv. Powder Tec. 22, 68–71 (2011). https://doi.org/10.1016/j.apt.2010.03.012

    Article  CAS  Google Scholar 

  33. P.P. Hankare, M.R. Kadam, P.D. Kamble, J. Alloy Compd. 489, 233–236 (2010). https://doi.org/10.1016/j.jallcom.2009.09.059

    Article  CAS  Google Scholar 

  34. E. Tasarkuyu, A.E. Irmak, A. Coskuna, S. Akturk, J. Alloy Compd. 589, 422–427 (2014). https://doi.org/10.1016/j.jallcom.2013.11.035

    Article  CAS  Google Scholar 

  35. Y.H. Dong, H. **an, J.L. Lv, Mat. Chem. Phys. 143, 578–586 (2014). https://doi.org/10.1016/j.matchemphys.2013.09.035

    Article  CAS  Google Scholar 

  36. Z. Wang, L. Shi, F. Wu, Sen. Actuators B 158, 89–96 (2011). https://doi.org/10.1016/j.snb.2011.05.046

    Article  CAS  Google Scholar 

  37. J. Hu, Y. Liu, J. Men, Solid State Sci. 61, 239–245 (2016). https://doi.org/10.1016/j.solidstatesciences.2016.10.008

    Article  CAS  Google Scholar 

  38. K.G. Cho, G.S. Kumar, E. Kolesnikov, K.G. Sudha, K. Mariyappan, A. Han, S.S. Choi, Nanomaterials. 12, 315 (2022). https://doi.org/10.3390/nano12030315

    Article  CAS  Google Scholar 

  39. W.Q. Li, Z.H. Wen, S.H. Tian, L.J. Shana, Y. **ong, Catal. Sci. Technol. 8, 1051–1061 (2018). https://doi.org/10.1039/C7CY02272G

    Article  CAS  Google Scholar 

  40. Y. Li, S. Yao, L. Xue, Y. Yan, J. Mater. Sci. 44, 4455–4459 (2009). https://doi.org/10.1007/s10853-009-3673-7

    Article  CAS  Google Scholar 

  41. J. Feng, T. Liu, Y. Xu, Ceram. Int. 37, 1203–1207 (2011). https://doi.org/10.1016/j.ceramint.2010.11.045

    Article  CAS  Google Scholar 

  42. S. Wang, M. Li, H. Gao, Z. Yin, C. Chen, H. Yang, L. Fang, V.J. Angadi, Z. Yi, D. Li, Appl. Surf. Sci. 608, 154977 (2023). https://doi.org/10.1016/j.apsusc.2022.154977

    Article  CAS  Google Scholar 

  43. Y. Han, S. Wang, M. Li, H. Gao, M. Han, H. Yang, L. Fang, V.J. Angadi, A.F.A.E. Rehim, A.M. Ali, D. Li, Catal. Sci. Technol. 13, 2841–2854 (2023). https://doi.org/10.1039/D3CY00278K

    Article  CAS  Google Scholar 

  44. M. Li, S. Wang, H. Gao, Z. Yin, C. Chen, H. Yang, L. Fang, V.J. Angadi, Z. Yi, D. Li, J. Am. Ceram. Soc. 106, 2420–2442 (2023). https://doi.org/10.1111/jace.18946

    Article  CAS  Google Scholar 

  45. C. Zhang, C. Wang, W. Zhan, App. Cat. B: Environ. 129, 509–516 (2013). https://doi.org/10.1016/j.apcatb.2012.09.056

    Article  CAS  Google Scholar 

  46. K.M. Parida, K.H. Reddy, S. Martha, Int. J. Hydrog. Energy 35, 12161–12168 (2010). https://doi.org/10.1016/j.ijhydene.2010.08.029

    Article  CAS  Google Scholar 

  47. A. Aizat, F. Aziz, M.N.M. Sokri, SN Appl. Sci. (2019). https://doi.org/10.1007/s42452-018-0104-x

    Article  Google Scholar 

  48. H. Shen, T. Xue, Y. Wang, G. Cao, Y. Lu, G. Fang, Mater. Res. Bull. 84, 15–24 (2016). https://doi.org/10.1016/j.materresbull.2016.07.024

    Article  CAS  Google Scholar 

  49. C. Yu, S. Wang, K. Zhang, M. Li, H. Gao, J. Zhang, H. Yang, L. Hu, A.V. Jagadeesha, D. Li, Opt. Mater. 135, 113364 (2023). https://doi.org/10.1016/j.optmat.2022.113364

    Article  CAS  Google Scholar 

  50. Y. Chuan, W. Shifa, Z. **g, G. Hua**g, C. **, Y. Zao, L. Dengfeng, Z. Phys. Chem. 237, 879–900 (2023). https://doi.org/10.1515/zpch-2022-0072

    Article  CAS  Google Scholar 

  51. S. Wang, H. Gao, Y. **, X. Chen, F. Wang, H. Yang, L. Fang, X. Chen, S. Tang, D. Li, Mater. Today Chem. 24, 100942 (2022). https://doi.org/10.1016/j.mtchem.2022.100942

    Article  CAS  Google Scholar 

Download references

Funding

The authors would like to express their gratitude to the Deanship of Scientific Research at King Khalid University, Abha, Saudi Arabia for funding this work through Research Groups Programme under Grant No. R.G.P.2/301/44.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by RDK, SS, RT, NRG, MAM, MS. The first draft of the manuscript was written by RDK and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to R. Dhinesh Kumar.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Research involving human and animal participants

There is no human tissue being used in the experiment.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, R.D., Sampath, S., Thangappan, R. et al. Citric acid mediated hydrothermal synthesis of LaMn1-xFexO3 nanoparticles for visible light-driven photocatalytic applications. J Mater Sci: Mater Electron 35, 2 (2024). https://doi.org/10.1007/s10854-023-11724-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11724-9

Navigation