Log in

Investigations on structural, magnetic, and dielectric properties of Gd-substituted perovskite BiFeO3 multiferroics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The research being conducted presents a glance into the effects of Gd substitution on the structural, magnetic, and dielectric properties of Bismuth ferrite by fabricating the series as Bi1−xGdxFeO3 (x = 0.0, 0.05, 0.10, 0.15, and 0.20) synthesized via Pechini’s modified sol–gel route. X-Ray Diffraction (XRD) data and Rietveld refinement of the XRD data revealed the phase purity and nanocrystalline nature of synthesized Nanoparticles (NPs). The substitution of Gd3+ ions lead to the structural distortion in BiFeO3 (BFO) NPs which is confirmed by the XRD Rietveld refinement. Fourier Transform Infrared Spectroscopy (FTIR) analysis confirms the characteristic metal oxide bonds of FeO6 octahedra which accommodates the Gd3+ ions in BFO samples. The ferromagnetic ordering parameters decreased with increasing Gd3+ ions concentration in BFO NPs but observed the highest magnetization of 0.815 emu/g at x = 0.15 due to dominating ferromagnetic behavior, this phenomenon is well understood with Arrott’s plots. Electron Paramagnetic Resonance (EPR) spectroscopy was performed to investigate the electronic and magnetic interactions in the samples, the analysis revealed the presence of distinct resonance peaks associated with Gd3+ ions substitution, providing insights into the local magnetic properties, and the observed ferromagnetic behavior of the samples is also endorsed by the EPR analysis. The microstructural analysis was conducted by the use of Field Emission Scanning Electron Microscopy (FESEM) in conjunction with Energy-Dispersive X-ray Spectroscopy (EDS) which provided insights into the surface morphology and elemental composition of the examined samples. The FESEM and EDS elemental overlay images displayed well-defined grain boundaries and a homogeneous distribution of Gd3+ ions throughout the matrix. Dielectric spectroscopy was employed to investigate the dielectric properties of the synthesized NPs. The dielectric constant, loss tangent, and dielectric loss of the samples with Gd substitution were measured over multiple frequencies to observe the impact of Gd substitution on the dielectric properties. These findings contribute to the understanding of the multifunctional properties of perovskite materials and their possible applications in potential fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. M. Kumar, P.C. Sati, S. Chhoker, V. Sajal, Electron spin resonance studies and improved magnetic properties of gd substituted BiFeO3 ceramics. Ceram. Int. 41(1), 777–786 (2015). https://doi.org/10.1016/j.ceramint.2014.09.002

    Article  CAS  Google Scholar 

  2. G. Catalan, J.F. Scott, Physics and applications of bismuth ferrite. Adv. Mater. 21(24), 2463–2485 (2009). https://doi.org/10.1002/adma.200802849

    Article  CAS  Google Scholar 

  3. E. Wilma, N.D. Mathur, J.F. Scott, Multiferroic and magnetoelectric materials. Nature 442(7104), 759–765 (2006). https://doi.org/10.1038/nature05023

    Article  CAS  Google Scholar 

  4. D. Golić, A. Luković, A. Radojković, D. Dapčević, J. Pajić, Dragović, Filip Torić, Jovana Ćirković, Goran Branković, and Zorica Branković. Change in structural, ferroelectric, and magnetic properties of bismuth ferrite induced by do** with gadolinium. Ceram. Int. 45(15), 19158–19165 (2019). https://doi.org/10.1016/j.ceramint.2019.06.162

    Article  CAS  Google Scholar 

  5. N. Sheoran, A. Kumar, V. Kumar, A. Banerjee, Structural, optical, and multiferroic properties of yttrium (Y3+)-substituted BiFeO 3 nanostructures. J. Supercond. Novel Magn. 33, 2017–2029 (2020). https://doi.org/10.1007/s10948-019-05411-2

    Article  CAS  Google Scholar 

  6. V. Verma, Structural, electrical and magnetic properties of rare-earth and transition element co-doped bismuth ferrites. J. Alloys Compd. 641, 205–209 (2015). https://doi.org/10.1016/j.jallcom.2015.03.260

    Article  CAS  Google Scholar 

  7. K. Sahu, A. Priyambada Mallick, S.K. Satpathy, B. Behera, Effect on structural, electrical and temperature sensing behavior of neodymium doped bismuth ferrite. Adv. Mater. Lett. 12(7), 1–7 (2021). https://doi.org/10.5185/amlett.2021.071648

    Article  Google Scholar 

  8. P. Kumar, Electric field-driven energy storage density and photo-catalytic temperament of Gd3+-BiFeO3 nano-ferrite. J. Mater. Sci.: Mater. Electron. (2022). https://doi.org/10.1007/s10854-021-07498-7

    Article  Google Scholar 

  9. P. Kumar, Sm3+-BiFeO3 nano catalyst: a synergetic effect of Sm3 + on enhanced multiferroic properties and photocatalysis. J. Alloys Compd. 891, 161896 (2022). https://doi.org/10.1016/j.jallcom.2021.161896

    Article  CAS  Google Scholar 

  10. P. Kumar, P. Chand, V. Singh, La3+ substituted BiFeO3-a proficient nano ferrite photo-catalyst under the application of visible light. Chem. Phys. Lett. 754, 137715 (2020). https://doi.org/10.1016/j.cplett.2020.137715

    Article  CAS  Google Scholar 

  11. K. Kumar, S. Sunil, A. Ramu, M. Sudharani, G. Ramanadha, Murali, R.P. Vijayalakshmi, Enhanced magnetic and dielectric properties of Gd doped BiFeO3: er nanoparticles synthesized by sol-gel technique. Phys. E: Low-dimensional Syst. Nanostruct. 115, 113689 (2020). https://doi.org/10.1016/j.physe.2019.113689

    Article  CAS  Google Scholar 

  12. S. Chauhan, C. Anand, B. Tripathi, M. Kumar, M. Sahni, R.C. Singh, Influence of na substitution on structural, magnetic, optical and photocatalytic properties of bismuth ferrite nanoparticles. J. Mater. Sci.: Mater. Electron. 31, 20191–20209 (2020). https://doi.org/10.1007/s10854-020-04540-y

    Article  CAS  Google Scholar 

  13. R. Das, T. Sarkar, K. Mandal, Multiferroic properties of Ba2+ and Gd3+ co-doped bismuth ferrite: magnetic, ferroelectric and impedance spectroscopic analysis. J. Phys. D 45, 45 (2012). https://doi.org/10.1088/0022-3727/45/45/455002

    Article  CAS  Google Scholar 

  14. T. Sahu, B. Behera, Dielectric, electrical and magnetic study of rare-earth-doped bismuth ferrite lead titanate. Appl. Phys. A 125, 1–13 (2019). https://doi.org/10.1007/s00339-019-2694-6

    Article  CAS  Google Scholar 

  15. N. Sheoran, M. Saini, A. Kumar, V. Kumar, T. Kumar, M. Sheoran, Size dependent morphology, magnetic and dielectric properties of BiFeO3 nanoparticles. MRS Adv. 4, 1659–1665 (2019). https://doi.org/10.1557/adv.2019.167

    Article  CAS  Google Scholar 

  16. P. Sati, M. Chandra, S. Arora, M. Chauhan, Kumar, S. Chhoker, Effect of Dy substitution on structural, magnetic and optical properties of BiFeO3 ceramics. J. Phys. Chem. Solids. 75(1), 105–108 (2014). https://doi.org/10.1016/j.jpcs.2013.09.003

    Article  CAS  Google Scholar 

  17. M. Arora, M. Kumar, Electron spin resonance probed enhanced magnetization and optical properties of Sm doped BiFeO3 nanoparticles. Mater. Lett. 137, 285–288 (2014). https://doi.org/10.1016/j.matlet.2014.08.140

    Article  CAS  Google Scholar 

  18. R. Verma, A. Chauhan, K.M. Batoo, R. Kumar, M. Hadhi, H. Emad, Raslan. Effect of calcination temperature on structural and morphological properties of bismuth ferrite nanoparticles. Ceram. Int. 47(3), 3680–3691 (2021). https://doi.org/10.1016/j.ceramint.2020.09.220

    Article  CAS  Google Scholar 

  19. R. Pandey, C. Panda, P. Kumar, M. Kar, Phase diagram of Sm and Mn co-doped bismuth ferrite based on crystal structure and magnetic properties. J. Solgel Sci. Technol. 85, 166–177 (2018). https://doi.org/10.1007/s10971-017-4537-2

    Article  CAS  Google Scholar 

  20. C. Fanggao, S. Guilin, F. Kun, Q. **, Z. Qijun, Effect of gadolinium substitution on dielectric properties of bismuth ferrite. J. Rare Earths. 24(1), 273–276 (2006). https://doi.org/10.1016/S1002-0721(07)60379-2

    Article  Google Scholar 

  21. N. Hernandez, V.A. Gonzalez-Gonzalez, I.B. Dzul-Bautista, J. Gutierrez, J.M. Barandiaran, I.R. De Larramendi, R.F. Cienfuegos-Pelaes, U. Ortiz-Mendez, Nd and sc co-doped BiFeO3 nanopowders displaying enhanced ferromagnetism at room temperature. J. Alloys Compd. 638, 282–288 (2015). https://doi.org/10.1016/j.jallcom.2015.03.102

    Article  CAS  Google Scholar 

  22. A. Aharoni, Amorphicity, heterogeneity, and the Arrott plots. J. Appl. Phys. 56(12), 3479–3484 (1984). https://doi.org/10.1063/1.333899

    Article  CAS  Google Scholar 

  23. P.W. Anderson, Generalizations of the Weiss molecular field theory of antiferromagnetism. Phys. Rev. 79(4), 705 (1950). https://doi.org/10.1103/PhysRev.79.705

    Article  Google Scholar 

  24. F. Yan, G. ** engineering. Sci. rep. 5(1), 9128 (2015). https://doi.org/10.1038/srep09128

    Article  Google Scholar 

  25. S. Nidhi, A. Kumar, V. Kumar, C. Meenu, A. Banerjee, Structural and multiferroic properties of BiFeO3/MgLa0.025Fe1.975O4 nanocomposite synthesized by sol–gel auto combustion route. J. Mater. Sci. Mater. Electron. 31(4), 2777–2788 (2020). https://doi.org/10.1007/s10854-019-02817-5

    Article  CAS  Google Scholar 

  26. L. Phor, S. Chahal, V. Kumar, Zn2+ substituted superparamagnetic MgFe2O4 spinel-ferrites: investigations on structural and spin-interactions. J. Adv. Ceram. 9, 576–587 (2020). https://doi.org/10.1007/s40145-020-0396-3

    Article  CAS  Google Scholar 

  27. P. Kumar, P. Chand, Large electric field driven strain and enhanced multiferroic properties of Ce3+/BiFeO3 nano photo-catalyst. Mater. Sci. Semiconduct. Process. 144, 106576 (2022). https://doi.org/10.1016/j.mssp.2022.106576

    Article  CAS  Google Scholar 

  28. M.M. Rhaman, M.A. Matin, M.A. Al Mamun, A. Hussain, M.N. Hossain, B.C. Das, M.A. Hakim, Islam. Enhanced electrical conductivity and multiferroic property of cobalt-doped bismuth ferrite nanoparticles. J. Mater. Sci.: Mater. Electron. 31, 8727–8736 (2020). https://doi.org/10.1007/s10854-020-03407-6

    Article  CAS  Google Scholar 

  29. S. Jain, Prachi, Shankar, O.P. Thakur, Unveiling the impact of Ni2+/Y3+ co-substitution on the structural, dielectric, and impedance properties of multiferroic spinel ferrite for hydroelectric cell application. Phys. Chem. Chem. Phys. 25(32), 21280–21296 (2023). https://doi.org/10.1039/D3CP02339G

    Article  CAS  Google Scholar 

  30. R. Ranga, K. Kumar, A. Kumar, Morphology, structural, dielectric and magnetic study of Ce3+ ion doped Mg0.5Zn0.5Fe2–xCexO4 (0.0 ≤ x ≤ 0.1) ferrite nanoparticles. Mater. Chem. Phys. 289, 126482 (2022). https://doi.org/10.1016/j.matchemphys.2022.126482

    Article  CAS  Google Scholar 

  31. P. Kumar, P. Chand, A. Joshi, Effect of annealing temperature on structural and dielectric properties of bismuth ferrite nanostructures. AIP Conf. Proc. (2019). https://doi.org/10.1063/1.5122344

    Article  Google Scholar 

Download references

Acknowledgements

Authors would like to express the sincere gratitude to Ms. Sweety Dahiya for her invaluable assistance in the analysis and corrections of this research article.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

SS contributed to conceptualization, methodology, and roles/writing of the original draft. AK contributed to supervision, conceptualization, methodology, and roles/writing, reviewing, and editing of the manuscript. OPT contributed to supervision, conceptualization, methodology, and roles/writing, reviewing, and editing of the manuscript.

Corresponding authors

Correspondence to Sourabh Sharma or Ashok Kumar.

Ethics declarations

Conflict of interest

The authors declare that they are not aware of any personal or financial conflicts that might have appeared to have an effect on the research reported in this study. The research submitted is carried out in compliance with relevant institutional biosafety and biosecurity protocols.

Additional information

Publisher’s Note

Springer nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, S., Kumar, A. & Thakur, O.P. Investigations on structural, magnetic, and dielectric properties of Gd-substituted perovskite BiFeO3 multiferroics. J Mater Sci: Mater Electron 34, 2050 (2023). https://doi.org/10.1007/s10854-023-11464-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11464-w

Navigation