Log in

Electrical properties of Li-doped Bi2/3Cu3Ti4O12 ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Li-doped Bi2/3Cu3Ti4O12 ceramics were successfully prepared using a conventional solid-state method. As the Li content increases, the lattice constant gradually decreased and the grain size increased. The analysis of energy-dispersive spectrometer and elemental map** suggested that the grain boundaries are enriched with CuO. The frequency dependence of the dielectric constant and loss exhibited a two-stage step-like decline. Three different dielectric characteristics were observed in the low-, mid-, and high-frequency ranges. In the mid-frequency range from 5 to 100 kHz, the dielectric constant was effectively improved by Li do**, and the dielectric loss gradually decreased with increasing Li do**. The complex impedances of all compositions present three distinct semi-arcs. Combined with the analysis of dielectric and impedance properties under DC bias, it was concluded that the dielectric responses of all Li-doped Bi2/3Cu3Ti4O12 ceramics at low, intermediate, and high frequencies originated from the electrode, grain boundary, and grain effects, respectively. The resistances of the different regions are calculated by impedance fitting. The study of the frequency dependence of dielectric properties, electric modulus, and impedance at various temperatures further verified the existence of electrode, grain boundary, and grain relaxations. X-ray photoelectron spectroscopy reveals that the increase in conductivity at high frequencies with increasing Li content was contributed to an jump of electrons between Cu+ and Cu2+.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The datasets generated during and /or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. K. Kamnev, Z. Pytlicek, M. Bendova, J. Prasek, F. Gispert-Guirado, E. Liobet, A. Mozalev, Sci. Technol. Adv. Mater. 24, 2162324 (2023)

    Article  Google Scholar 

  2. Z.L. Lu, G. Wang, W.C. Bao, J.L. Li, L.H. Li, Energy Environ. Sci. 13, 2938 (2020)

    Article  CAS  Google Scholar 

  3. Z.L. Lu, W.C. Bao, G. Wang, S.K. Sun, L.H. Li, J. Nano Energy Power Res. 79, 105423 (2021)

    CAS  Google Scholar 

  4. J. Mohammed, T. Tchuank Tekou Carol, H.Y. Hafeez, D. Basandrai, R. Gopala, S.K. Bhadu, S.B. Godara, A.K. Narang, Srivastava, J. Mater. Sci. Mater. Electron. 30, 4026 (2019)

    Article  CAS  Google Scholar 

  5. Q.N. Cai, D.Y. Zhao, H. Xu, W.H. Xu, H.Y. Yao, Y.H. Zhang, Nanocomposites. 9, 10 (2023)

    Article  CAS  Google Scholar 

  6. P. Saengvong, N. Chanlek, P. Srepusharawoot, V. Harnchana, P. Thongbai, J. Am. Ceram. Soc. 105, 3447 (2022)

    Article  CAS  Google Scholar 

  7. Y.B. Wang, W.J. Jie, C. Yang, Adv. Funct. Mater. 29, 1808118 (2019)

    Article  Google Scholar 

  8. K.N. Wu, Y. Wang, Z.K. Hou, S.T. Li, J.Y. Li, Z. Tang, Y. Lin, J. Phys. D Appl. Phys. 54, 045301 (2021)

    Article  CAS  Google Scholar 

  9. A. Cho, C.S. Han, M. Kang, W. Choi, J. Li, J. Jeon, S.J. Yu, Y.S. Jung, Y.S. Cho, ACS Appl. Mater. Interfaces. 10, 16203 (2018)

    Article  CAS  Google Scholar 

  10. L.L. Ren, L.J. Yang, C. Xu, X.T. Zhao, R.J. Liao, J. Alloy Compd. 768, 652 (2018)

    Article  CAS  Google Scholar 

  11. L. Sun, Q. Ni, J.Q. Guo, E.S. Cao, W.T. Hao, Y.J. Zhang, L. Ju, Appl. Phys. A 124, 428 (2018)

    Article  Google Scholar 

  12. W.B. Hu, Y. Liu, R.L. Withers, T.J. Frankcombe, L. Noren, A. Snashall, M. Kitchin, P. Smith, B. Gong, H. Chen, J. Schiemer, F. Brink, J.W. Leung, Nat. Mater. 12, 821 (2013)

    Article  CAS  Google Scholar 

  13. C.L. Zhao, Z.W. Li, J.G. Wu, J. Mater. Chem. C 7, 4235 (2019)

    Article  CAS  Google Scholar 

  14. W. Dong, D.H. Chen, W.B. Hu, T.J. Frankcombe, H. Chen, C. Zhou, Z.X. Fu, X.Y. Wei, Z. Xu, Z.F. Liu, Y.X. Li, Y. Liu, Sci. Rep. 7, 99501 (2017)

    Google Scholar 

  15. N. Thongyong, P. Srepusharawoot, W. Tuichai, N. Chanlek, V. Amornkitbamrung, P. Thongbai, Ceram. Int. 44, S145 (2018)

    Article  CAS  Google Scholar 

  16. W.B. Wang, L.X. Li, T. Lu, N. Zhang, W.J. Luo, J. Alloy Compd. 806, 89 (2019)

    Article  CAS  Google Scholar 

  17. L.H. Yang, X.L. Chao, Z. Yang, N. Zhao, L.L. Wei, Z.P. Yang, Ceram. Int. 42, 2526 (2016)

    Article  CAS  Google Scholar 

  18. W.T. Hao, J.L. Zhang, Y.Q. Tan, W.B. Su, J. Am. Ceram. Soc. 92, 2937 (2009)

    Article  CAS  Google Scholar 

  19. D. Szwagierczak, J. Electroceram. 23, 56 (2008)

    Article  Google Scholar 

  20. L.M. Jesus, L.B. Barbosa, D.R. Ardila, R.S. Silva, M. Peko, J. Alloy. Compd. 735, 2384 (2018)

    Article  CAS  Google Scholar 

  21. L.M. Jesus, R.S. Silva, R. Raj, J.-C. M’Peko, J. Eur. Ceram. Soc. 40, 4004 (2020)

    Article  CAS  Google Scholar 

  22. A. Haque, A. Shukla, U. Dutta, D. Ghosh, A. Gayen, P. Mahata, M. Vasundhara, A.K. Kundu, M.M. Seikh, Ceram. Int. 46, 5907 (2020)

    Article  CAS  Google Scholar 

  23. V.S. Rai, D. Prajapati, M.K. Verma, V. Kumar, S. Pandey, T. Das, N.B. Singh, K.D. Mandal, J. Mater. Sci. Mater. Electron. 33, 14868 (2022)

    Article  CAS  Google Scholar 

  24. L.H. Yang, L.W. Song, Q. Li, T. Zhang, J. Adv. Dielectr. 11, 2150007 (2021)

    Article  CAS  Google Scholar 

  25. A. Khare, S.S. Yadava, P. Gautam, N.K. Mukhopadhyay, K.D. Mandal, J. Mater. Sci. Mater. Electron. 28, 5523 (2017)

    Article  CAS  Google Scholar 

  26. L.H. Yang, X.L. Chao, P.F. Liang, L.L. Wei, Z.P. Yang, Mater. Res. Bull. 64, 216 (2015)

    Article  CAS  Google Scholar 

  27. Y.H. Lin, J.N. Cai, M. Li, C.W. Nan, J.L. He, J. Appl. Phys. 103, 074111 (2008)

    Article  Google Scholar 

  28. Y.Y. Wang, H.B. Liu, T.N. Yan, J.W. Zhao, S.F. Guo, Z.L. Lu, D.W. Wang, J. Am. Ceram. Soc. 105, 2020 (2022)

    Article  CAS  Google Scholar 

  29. Y.Y. Wang, H.B. Liu, T.N. Yan, J.W. Zhao, J.J. Li, S.F. Guo, S.K. Sun, R. Sun, Z.L. Lu, D.W. Wang, Mater. Lett. 309, 131453 (2022)

    Article  CAS  Google Scholar 

  30. L.H. Yang, G.M. Huang, T.T. Wang, H.F. Hao, Y. Tian, Ceram. Int. 42, 9935 (2016)

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (NSFC) (Grant Nos. 52202147, 11974275, and 52174151), the Shaanxi Province Key Joint Fund Project (No.2021JML-05), and the Shaanxi Province Key Science and Technology Innovation Team Project (Grant No. 2019TD-026).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by WJG, JXW, CXH, GLY, and TZ. The first draft of the manuscript was written by LHY and all authors commented on the previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Longhai Yang or Tao Zhang.

Ethics declarations

Conflict of interest

The authors declare under our ethical responsibility that the paper is original and has not been submitted or is not being considered for publication elsewhere. Meanwhile, we declare that all authors have seen and approved the manuscript. There is no conflict of interest between us.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, L., Gao, W., Wang, J. et al. Electrical properties of Li-doped Bi2/3Cu3Ti4O12 ceramics. J Mater Sci: Mater Electron 34, 2026 (2023). https://doi.org/10.1007/s10854-023-11440-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11440-4

Navigation