Log in

Highly efficient photocatalytic degradation of organic pollutants by Sn/Al codoped α-Fe2O3 nanostructures

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Herein, we synthesized a nanostructured Sn/Al codoped Fe2O3 photocatalyst by a simple and cost-effective hydrothermal approach followed by air annealing. The effect of in situ Sn and Al do** on the morphological, structural, and photocatalytic properties of hydrothermal Fe2O3-based photocatalysts has been studied. The presence of Al2O3/SnO2 and Sn/Al codo** in the 2%Al/6%Sn/Fe2O3 nanostructured photocatalyst is confirmed by the XPS analysis. The synergistic impact between Sn and Al codo** and Al2O3/SnO2 surface modification significantly improves the photocatalytic activity of Fe2O3-based photocatalysts for salicylic acid degradation. The optimum 2%Al/6%Sn/Fe2O3 nanostructured photocatalysts achieved 96.9% salicylic acid degradation efficiency within 150 min under the mimic solar light illumination. The possible electron transfer and radical generation during the photocatalytic reaction over pure and 2%Al/6%Sn/Fe2O3 nanostructured photocatalysts has been proposed. Therefore, this work could offer new insight into designing and understanding the synergistic role of Al2O3/SnO2 surface modification and Sn/Al codo** in the photocatalytic properties of the Fe2O3 photocatalysts for water treatment applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data will be made available on reasonable request.

References

  1. R. Saleh, A. Taufik, Degradation of methylene blue and Congo-red dyes using Fenton, photo-Fenton, sono-Fenton, and sonophoto-Fenton methods in the presence of iron(II,III) oxide/zinc oxide/graphene (Fe3O4/ZnO/graphene) composites, Separ. Purif. Technol. 210, 563–573 (2019). https://doi.org/10.1016/j.seppur.2018.08.030

    Article  CAS  Google Scholar 

  2. R. Keyikoglu, A. Khataee, H. Lin, Y. Orooji, Vanadium (V)-doped ZnFe LDH for enhanced sonocatalytic degradation of pymetrozine. Chem. Eng. J. 434, 134730 (2022). https://doi.org/10.1016/j.cej.2022.134730

    Article  CAS  Google Scholar 

  3. N.S. Mohan, R. Gokulkumar, J. Shankar, R. Sridharan, B. Logesh, R. Sasikumar, K. Vallarasu, V. Vijayalakshmi, A facile green approach of Fe2O3, Fe2O3 @Ag, Fe2O3 @AC and Fe2O3 @Ag@AC NPs synthesized via Cocos nucifera L for wastewater treatment applications. Results in Chemistry. 4, 100626 (2022). https://doi.org/10.1016/j.rechem.2022.100626

    Article  CAS  Google Scholar 

  4. M. Ghalkhani, N. Zare, F. Karimi, C. Karaman, M. Alizadeh, Y. Vasseghian, Recent advances in ponceau dyes monitoring as food colorant substances by electrochemical sensors and developed procedures for their removal from real samples. Food Chem. Toxicol. 161, 112830 (2022). https://doi.org/10.1016/j.fct.2022.112830

    Article  CAS  Google Scholar 

  5. X. Liu, J. Iocozzia, Y. Wang, X. Cui, Y. Chen, S. Zhao, Z. Li, Z. Lin, Noble metal-metal oxide nanohybrids with tailored nanostructures for efficient solar energy conversion, photocatalysis and environmental remediation. Energy Environ. Sci. 10, 402 (2017). https://doi.org/10.1039/C6EE02265K

    Article  CAS  Google Scholar 

  6. A. Jiang, H. Guo, S. Yu, F. Zhang, T. Shuai, Y. Ke, P. Yang, Y. Zhou, Dual charge-accepting engineering modified AgIn5S8/CdS quantum dots for efficient photocatalytic hydrogen evolution overall H2S splitting. Appl. Catal. B: Environ. 332, 122747 (2023). https://doi.org/10.1016/j.apcatb.2023.122747

    Article  CAS  Google Scholar 

  7. S. Wang, C. Yao, Y. Cai, Y. Yang, H. Ma, B. Jiang, J. Ma, Construct α-Fe2O3/rGO/PS composite structure for promoted spatial charge separation and exceptional catalytic activity in visible-light-driven photocatalysis-persulfate activation coupling system. J. Alloys Compd. 898, 162829 (2022). https://doi.org/10.1016/j.jallcom.2021.162829

    Article  CAS  Google Scholar 

  8. H. Dai, S. Xu, J. Chen, X. Miao, J. Zhu, Oxalate enhanced degradation of Orange II in heterogeneous UV-Fenton system catalyzed by Fe3O4@γ-Fe2O3 composite. Chemosphere. 199, 147–153 (2018). https://doi.org/10.1016/j.chemosphere.2018.02.016

    Article  CAS  Google Scholar 

  9. S.S. Li, L. Wang, Y.D. Li, L.H. Zhang, N. **ao, Y.Q. Gao, N. Li, W.Y. Song, L. Ge, J. Liu, Novel photocatalyst incorporating Ni–Co layered double hydroxides with P-doped CdS for enhancing photocatalytic activity towards hydrogen evolution. Appl. Catal. B Environ. 254, 145–155 (2019). https://doi.org/10.1016/j.apcatb.2019.05.001

    Article  CAS  Google Scholar 

  10. H.A. Alburaih, S. Aman, N. Ahmad, S.R. Ejaz, R.Y. Khosa, A.G. Abid, S. Manzoor, H. Waheed, T.A. Taha, Synergistic photodegradation of methylene blue by Sm doped Fe2O3 photocatalyst under sunlight. Chin. J. Phys. (2022). https://doi.org/10.1016/j.cjph.2022.08.017

    Article  Google Scholar 

  11. N. Popov, M. Ristić, M. Bošković, M. Perović, S. Musić, D. Stanković, S. Krehula, Influence of Sn do** on the structural, magnetic, optical and photocatalytic properties of hematite (α-Fe2O3) nanoparticles. J. Phys. Chem. Solids. 161, 110372 (2022). https://doi.org/10.1016/j.jpcs.2021.110372

    Article  CAS  Google Scholar 

  12. N. Meshram, M.A. Mahadik, I.K. Jeong, Y.S. Seo, M. Cho, J.S. Jang, Effect of tetravalent ions dopants and CoOx surface modification on hematite nanorod array for photoelectrochemical degradation of orange-II dye. J. Taiwan. Inst. Chem. Eng. 97, 305–315 (2019). https://doi.org/10.1016/j.jtice.2019.02.025

    Article  CAS  Google Scholar 

  13. M.A. Mahadik, G.W. An, S. David, S.H. Choi, M. Cho, J.S. Jang, Fabrication of A/R-TiO2 composite for enhanced photoelectrochemical performance: solar hydrogen generation and dye degradation. Appl. Surf. Sci. 426, 833–843 (2017). https://doi.org/10.1016/j.apsusc.2017.07.179

    Article  CAS  Google Scholar 

  14. S. Pigeot-Re´my, D. Gregori, R. Hazime, A. He´rissan, C. Guillard, C. Ferronato, S. Cassaignon, C. Colbeau-Justin, O. Durupthy, Size and shape effect on the photocatalytic efficiency of TiO2 brookite. J. Mater. Sci. 54, 1213–1225 (2019). https://doi.org/10.1007/s10853-018-2924-x

    Article  CAS  Google Scholar 

  15. P. Kumar, P. Kumar, A. Kumar, R.C. Meena, R. Tomar, F. Chand, K. Asokan, Structural, morphological, electrical and dielectric properties of Mn-doped CeO2. J. Alloys Compd. 672, 543–548 (2016). https://doi.org/10.1016/j.jallcom.2016.02.153

    Article  CAS  Google Scholar 

  16. M. Valášková, J. Tokarský, J. Pavlovský, T. Prostějovský, K. Kočí, α-Fe2O3 Nanoparticles/vermiculite clay material: structural, optical and photocatalytic properties. Mater. 12, 1880 (2019). https://doi.org/10.3390/ma12111880

    Article  CAS  Google Scholar 

  17. M.A. Mahadik, P.S. Shinde, M. Cho, J.S. Jang, Metal oxide top layer as an interfacial promoter on a ZnIn2S4/TiO2 heterostructure photoanode for enhanced photoelectrochemical performance. Appl. Catal. B: Environ. 184, 337–346 (2016). https://doi.org/10.1016/j.apcatb.2015.12.001

    Article  CAS  Google Scholar 

  18. F. Li, J. Li, F. Li, L. Gao, X. Long, Y. Hu, C. Wang, S. Wei, J. **, J. Ma, Facile regrowth of Mg–Fe2O3/P–Fe2O3 homojunction photoelectrode for efficient solar water oxidation. J. Mater. Chem. A 6, 13412–13418 (2018). https://doi.org/10.1039/C8TA05194A

    Article  CAS  Google Scholar 

  19. C. Su, D. Zhang, X. Pu, Z. He, X. Hu, L. Li, G. Hu, Magnetically separable NiFe2O4 /Ag3VO4/Ag2VO2PO4 direct Z -scheme heterostructure with enhanced visible-light photoactivity. J. Chem. Technol. Biotechnol. 96, 2976–2985 (2021)

    Article  CAS  Google Scholar 

  20. T. Cheng, H. Gao, R. Li, S. Wang, Z. Yi, H. Yang, Flexoelectricity-induced enhancement in carrier separation and photocatalytic activity of a photocatalyst. Appl. Surf. Sci. 566, 150669 (2021). https://doi.org/10.1016/j.apsusc.2021.150669

    Article  CAS  Google Scholar 

  21. K.K. Supin, A. George, Y. Ranjith Kumar, K.K. Thejas, G. Mandal, A. Chanda, M. Vasundhara, Structural, optical and magnetic properties of pure and 3d metal dopant-incorporated SnO2 nanoparticles. RSC Adv. 12, 26712 (2022). https://doi.org/10.1039/d2ra03691f

    Article  CAS  Google Scholar 

  22. C.M. Tian, W.W. Li, Y.M. Lin, Z.Z. Yang, L. Wang, Y.G. Du, H.Y. **ao, L. Qiao, J.Y. Zhang, L. Chen, D.C. Qi, J.L. MacManus-Driscoll, K.H.L. Zhang, Electronic structure, optical properties and photoelectrochemical activity of Sn doped Fe2O3 thin films. J. Phys. Chem. C 124, 23, 12548–12558 (2020). https://doi.org/10.1021/acs.jpcc.0c02875

    Article  CAS  Google Scholar 

  23. I.N. Reddy, V.R. Reddy, A. Dey, N. Sridhara, S. Basavaraja, P. Bera, C. Anandan, A.K. Sharma, Microstructural studies of e-beam evaporated alumina thin films. Surf. Eng. 30, 594 (2014). https://doi.org/10.1179/1743294414Y.0000000294

    Article  CAS  Google Scholar 

  24. R.C. Fang, Q.Q. Sun, P. Zhou, W. Yang, P.-F. Wang, D.W. Zhang, High-performance bilayer flexible resistive random access memory based on low-temperature thermal atomic layer deposition. Nanoscale Res. Lett. 8, 92 (2013). https://doi.org/10.1186/1556-276X-8-92

    Article  CAS  Google Scholar 

  25. Y.M. Hunge, A.A. Yadav, M.A. Mahadik, V.L. Mathe, C.H. Bhosale, A highly efficient visible-light responsive sprayed WO3/FTO photoanode for photoelectrocatalytic degradation of brilliant blue. J. Taiwan. Inst. Chem. Eng. 85, 273 (2018). https://doi.org/10.1016/j.jtice.2018.01.048

    Article  CAS  Google Scholar 

  26. M.A. Mahadik, S.S. Shinde, Y.M. Hunge, V.S. Mohite, S.S. Kumbhar, A.V. Moholkar, K.Y. Rajpure, C.H. Bhosale, UV assisted photoelectrocatalytic oxidation of phthalic acid using spray deposited Al-doped zinc oxide thin films. J. Alloys Compd. 611, 446–451 (2014). https://doi.org/10.1016/j.jallcom.2014.05.023

    Article  CAS  Google Scholar 

  27. S.S. Kumbhar, M.A. Mahadik, S.S. Shinde, K.Y. Rajpure, C.H. Bhosale, Fabrication of ZnFe2O4 films and its application in photoelectrocatalytic degradation of salicylic acid. J. Photochem. Photobiol B Biol. 142, 118–123 (2015). https://doi.org/10.1016/j.jphotobiol.2014.12.002

    Article  CAS  Google Scholar 

  28. J. Zhang, C. Su, X. **e, P. Liu, M.E. Huq, Enhanced visible light photocatalytic degradation of dyes in aqueous solution activated by HKUST-1: performance and mechanism. RSC Adv. 10, 37028–37034 (2020). https://doi.org/10.1039/D0RA05275B

    Article  CAS  Google Scholar 

  29. K. Zhu, C. **, Z. Klencsár, J. Wang, Fabrication of yolk/shell partially inverse spinel cobalt ferrite/mesoporous silica nanostructured catalysts for organic pollutants degradation by peroxymonosulfate activation. Catal. Lett. 147, 1732–1743 (2017). https://doi.org/10.1007/s10562-017-2042-4

    Article  CAS  Google Scholar 

  30. S. Wang, H. Gao, C. Chen, Y. Wei, X. Zhao, Irradiation assisted polyacrylamide gel route for the synthesize of the Mg1–xCoxAl2O4 nano-photocatalysts and its optical and photocatalytic performances. J. Solgel Sci. Technol. 92, 186–199 (2019). https://doi.org/10.1007/s10971-019-05062-8

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors extend their sincere appreciation to the Researchers Supporting Project number (RSP2023R370), King Saud University, Riyadh, Saudi Arabia for the financial support.

Funding

This work was supported by King Saud University Grant No. (RSP2023R370).

Author information

Authors and Affiliations

Authors

Contributions

NM: conceptualization, methodology, writing—original draft preparation, writing—reviewing NT: data curation, formal analyses, software. MT: formal analyses, data curation, MM: investigation, validation, supervision, writing—reviewing. SS: validation, supervision, funding acquisition, writing—reviewing.

Corresponding authors

Correspondence to M. A. Mahadik or Shoyebmohamad F. Shaikh.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher’s Note

Springer nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 351 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meshram, N., Truong, N.T.N., Tamboli, M.S. et al. Highly efficient photocatalytic degradation of organic pollutants by Sn/Al codoped α-Fe2O3 nanostructures. J Mater Sci: Mater Electron 34, 1990 (2023). https://doi.org/10.1007/s10854-023-11397-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11397-4

Navigation