Log in

Investigating the influence of deposition time on nanostructured CdS film prepared by chemical bath deposition for photodetection applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This study investigates the effect of varying deposition time on the properties of CdS films deposited by chemical bath deposition technique. The experimental results indicate that all the deposited films exhibit a crystalline structure, with the film structure transformed from cubic to hexagonal as the deposition time increases from 60 to 120 min. The film morphology confirms the formation of uniformly distributed grains, with the grain size decreasing as the deposition time increases. Furthermore, an increase in the deposition time from 60 to 120 min leads to a decrease in the optical energy gap of the CdS film from 2.73 to 2.35 eV. The optoelectronic properties of CdS/Si photodetector are investigated as a function of deposition time. The maximum photocurrent was obtained for the photodetector deposited at 60 min. The responsivity, external quantum efficiency, and specific detectivity of CdS/Si deposited at 60 min were 0.26 A/W at 450 nm, 82% at 400 nm, and 9.07 × 1011 Jones at 450 nm, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author (Raid A. Ismail)) on reasonable request.

References

  1. H. Khallaf, I.O. Oladeji, G. Chai, L. Chow, Characterization of CdS thin films grown by chemical bath deposition using four different cadmium sources. Thin Solid Films 516, 7306–7312 (2008)

    Article  CAS  Google Scholar 

  2. M. Ramadan, M.S. Elnouby, O. El-Shazly, E.F. El-Wahidy, A.A.M. Farag, N. Roushdy, Facile fabrication, structural and electrical investigations of cadmium sulfide nanoparticles for fuel cell performance. Mater. Renew. Sustain. Energy 11, 277–286 (2022)

    Article  Google Scholar 

  3. S.R. Gosavi, C.P. Nikam, A.R. Shelke, A.M. Patil, S.-W. Ryu, J.S. Bhat, N.G. Deshpande, Chemical synthesis of porous web- structured CdS thin films for photosensor applications. Mater. Chem. Phys. 160, 244–250 (2015)

    Article  CAS  Google Scholar 

  4. S. Arya, A. Sharma, B. Singh, M. Riyas, P. Bandhoria, M. Aatif, V. Gupta, Sol–gel synthesis of Cu-doped p-CdS nanoparticles and their analysis as p-CdS/n-ZnO thin film photodiode. Opt. Mater. 79, 115–119 (2018)

    Article  CAS  Google Scholar 

  5. L. Cheng, Q. **ang, Y. Liao, H. Zhang, CdS-based photocatalysts. Energy Environ. Sci. 11, 1362–1391 (2018)

    Article  CAS  Google Scholar 

  6. R.S. Meshram, B.M. Suryavanshi, R.M. Thombre, Structural and optical properties of CdS thin films obtained by spray pyrolysis. Pelagia Res. Libr. 3, 1563–1571 (2012)

    CAS  Google Scholar 

  7. A. Alam, W. Cranton, M. Dharmadas, Electrodeposition of CdS thin-films from cadmium acetate and ammonium thiosulphate precursors. J. Mater. Sci.: Mater. Electron. 30, 4580–4589 (2019)

    CAS  Google Scholar 

  8. F. Iacomi, M. Purica, E. Budianu, P. Prepelita, D. Macovei, Structural studies on some doped CdS thin films deposited by thermal evaporation. Thin Solid Films 515, 6080–6084 (2007)

    Article  CAS  Google Scholar 

  9. H. Uda, H. Yonezawa, Y. Ohtsubo, M. Kosaka, H. Sonomura, Thin CdS films prepared by metalorganic chemical vapor deposition. Sol. Energy Mater. Sol. Cells 75, 219–226 (2003)

    Article  CAS  Google Scholar 

  10. A.Y. Jaber, S.N. Alamri, M.S. Aida, CdS thin films growth by ammonia free chemical bath deposition technique. Thin Solid Films 520, 3485–3489 (2012)

    Article  CAS  Google Scholar 

  11. L. Garcia, S. Loredo, S. Shaji, J. Aguilar Martinez, D.A. Avellaneda, T.K. Das Roy, B. Krishnan, Structure and properties of CdS thin films prepared by pulsed laser assisted chemical bath deposition. Mater. Res. Bull. 83, 459–467 (2016)

    Article  CAS  Google Scholar 

  12. A.S. Najm, H. Naeem, D. Alwarid, A. Aljuhani et al., Mechanism of chemical bath deposition of CdS thin films: influence of sulphur precursor concentration on microstructural and optoelectronic characterizations. Coatings 12, 1400 (2022)

    Article  CAS  Google Scholar 

  13. M. Singha, W. Ul Haqa, S. Bishnoib, B. Singhc, S. Arya, A. Khoslae, V. Gupta, Investigating photoluminescence properties of Eu3 + doped CaWO4 nanoparticles via Bi3+ amalgamation for w-LEDs application. Mater. Technol. 37(9), 1051–1061 (2022)

    Article  Google Scholar 

  14. S. Verma, P. Mahajan, B. Padha, A. Ahmed, S. Arya, Nanowires based solid-state asymmetric self-charging supercapacitor driven by PVA–ZnO–KOH flexible piezoelectric matrix. Electrochim. Acta 465, 142933 (2023)

    Article  CAS  Google Scholar 

  15. N. Susha, R. Joseph, S. Nair, Tuning of optical and magnetic properties of nanostructured CdS thin films via nickel do**. Mater. Sci. 51(23), 10526–10533h (2016)

    Article  CAS  Google Scholar 

  16. G. Gou, G. Dai, C. Qian, Y. Liu, High-performance ultraviolet photodetectors based on CdS/CdS:SnS2 superlattice nanowires. Nanoscale 8(30), 14580–14586 (2016)

    Article  CAS  Google Scholar 

  17. S. Girish Kumar, K.S.R. Koteswara Rao, Physics and chemistry of CdTe/CdS thin film heterojunction photovoltaic devices: fundamental and critical aspects. Energy Environ. Sci. 7(1), 45–102 (2014)

    Article  Google Scholar 

  18. K. Adegoke, M. Iqbal, H. Louis, O. Bello, Synthesis, characterization and application of CdS/ZnO nanorod heterostructure for the photodegradation of rhodamine B dye. Mater. Sci. Energy Technol. 2, 329–336 (2019)

    Google Scholar 

  19. Y. Li, X.Y. Song, Y.L. Song, P.F. Ji, F.Q. Zhou, M.L. Tian, H.C. Huang, X.J. Li, Characterization of electronic structures from CdS/Si nanoheterostructure array based on silicon nanoporous pillar array. Mater. Res. Bull. 74, 507–510 (2016)

    Article  CAS  Google Scholar 

  20. B. Singh, S. Arya, A. Sharma, P. Mahajan, J. Gupta, A. Singh, S. Verma, P. Bandhoria, V. Bharti, Effect of pd concentration on the structural, morphological and photodiode properties of TiO2 nanoparticles. J. Mater. Sci: Mater. Electron. 31, 65–74 (2020)

    CAS  Google Scholar 

  21. S. Hemathangam, G. Thanapathy, S. Muthukumaran, Optical, structural, FTIR and photoluminescence characterization of Cu and Al doped CdS thin films by chemical bath deposition method. Mater. Science: Mater. Electron. 27(7), 6800–6808 (2016)

    CAS  Google Scholar 

  22. W. Hamoudi, R. Ismail, H. Abbas, Hybrid CdS nanowires/Si heterostructure photodetector fabricated by intense pulsed light assisted—laser ablation in liquid. Opt. Quant. Electron. 51, 126–142 (2019)

    Article  Google Scholar 

  23. R.A. Ismail, K.S. Khashan, A.M. Alwan, Study of the effect of incorporation of CdS nanoparticles on the porous silicon photodetector. Silicon 9, 321–326 (2017)

    Article  CAS  Google Scholar 

  24. V.M. Dzhagan, M.Y. Valakh, C. Himcinschi, A.G. Milekhin, D. Solonenko, N.A. Yeryukov, O.E. Raevskaya, O.L. Stroyuk, D.R.T. Zahn, Raman and infrared phonon spectra of ultrasmall colloidal CdS nanoparticles. J. Phys. Chem. C 118, 19492–19497 (2014)

    Article  CAS  Google Scholar 

  25. R.A. Ismail, N.F. Habubi, M.M. Abbod, Preparation of high-sensitivity In2S3/Si heterojunction photodetector by chemical spray pyrolysis. Opt. Quant. Electron. 48, 455 (2016)

    Article  Google Scholar 

  26. E.T. Salem, R.A. Ismail, M.A. Fakhry, Y. Yusof, Reactive PLD of ZnO thin film for optoelectronic application. Int. J. Nanoelectronics Mater. 9, 111–122 (2016)

    Google Scholar 

  27. R.A. Ismail, K.Z. Yehya, O.A. Abdulrazaq, Preparation and photovoltaic properties of Ag2O/Si isotype heterojunction. Surf. Rev. Lett. 12, 299–303 (2005)

    Article  CAS  Google Scholar 

  28. S. Arya, P.A. Singh, R. Kour, Comparative study of CuO, CuO@Ag and CuO@Ag:La nanoparticles for their photosensing properties. Mater. Res. Express 6, 116313 (2019)

    Article  Google Scholar 

  29. M. Deng, Z. Li, X. Deng, Y. Hu, X. Fang, Wafer-scale heterogeneous integration of self-powered lead-free metal halide UV photodetectors with ultrahigh stability and homogeneity. J. Mater. Sci. Technol. 164, 150–115 (2023)

    Article  Google Scholar 

  30. Y. Chen, L. Su, M. Jiang, Switch type PANI/ZnO core-shell microwire heterojunction for UV photodetection. J. Mater. Sci. Technol. 105, 259–265 (2022)

    Article  CAS  Google Scholar 

  31. R. Ismail, A.-M.E. AlSamarai, A.M. Muhammed, High-performance nanostructured p-Cu2S/n-Si photodetector prepared by chemical bath deposition technique. J. Mater. Sci. 30(12), 11807–11818 (2019)

    CAS  Google Scholar 

  32. R. Ismail, D. Raouf, High efficiency in2O3/c-Si heterojunction solar cells produced by rapid thermal oxidation. J. Optoelectron. Adv. Mater. 8, 1443–1446 (2006)

    CAS  Google Scholar 

  33. S.S. Shaker, R.A. Ismail, D.S. Ahmed, Preparation of bismuth oxide nanoplatelets/Si Photodetector by laser ablation in liquid under effect of an external magnetic field. Silicon 14, 107–113 (2022)

    Article  CAS  Google Scholar 

  34. R.A. Ismail, A.D. Faisal, S.S. Shaker, Preparation of ZnS-decorated MWCNTs/p-Si hybrid photodetector by pulsed laser deposition. Opt. Mater. 133, 112998 (2022)

    Article  CAS  Google Scholar 

  35. R.A. Ismail, A.M. Mousa, S.S. Shaker, Improved growth conditions of pulsed laser-deposited PbI2 nanostructure film: towards high-photosensitivity PbI2/CNTs/Si photodetectors. J. Mater. Sci.: Mater. Electron. 30, 20850–20859 (2019)

    CAS  Google Scholar 

  36. S.S. Shaker, R.A. Ismail, D.S. Ahmed, High-responsivity heterojunction photodetector based on Bi2O3-decorated MWCNTs nanostructure grown on silicon via laser ablation in liquid. J. Inorg. Organomet. Polym Mater. 32, 1381–1388 (2022)

    Article  CAS  Google Scholar 

  37. L. Su, T. Yan, X. Liu, F. Cao, X. Fang, A tunable polarization field for enhanced performance of flexible BaTiO3@TiO2 nanofiber photodetector by suppressing dark current to pA level. Adv. Funct. Mater. 33, 2214533 (2023)

    Article  CAS  Google Scholar 

  38. S.-J. Young, Y.-H. Liu, M. Shiblee, K. Ahmed, L.-T. Lai, L. Nagahara, T. Thundat, T. Yoshida, S. Arya, H. Furukawa, A. Khosla, Flexible ultraviolet photodetectors based on one-dimensionalgallium-doped zinc oxide nanostructures. ACS Appl. Electron. Mater. 2, 3522–3529 (2020)

    Article  CAS  Google Scholar 

  39. M. Nawaz, L. Xu, X. Zhou et al., CdS nanobelt-based self-powered flexible photodetectors with high photosensitivity. Mater. Adv. 2, 6031–6038 (2021)

    Article  CAS  Google Scholar 

  40. S.S. Al-Ani, R. Ismail, H. Al-Ta’ay, Optoelectronic properties n: CdS: In/p-Si heterojunction photodetector. J. Mater. Sci.: Mater. Electron. 17, 819–824 (2006)

    CAS  Google Scholar 

  41. Y. Dai, X. Wang, W. Peng, C. Xu, C. Wu, K. Dong, R. Liu, Z. Wang, Self-powered Si/CdS flexible photodetector with broadband response from 325 to 1550 nm based on pyro-phototronic effect: an approach for photosensing below bandgap energy. Adv. Mater. 30, 1705893 (2018)

    Article  Google Scholar 

  42. A. Ali, F. Ahmed, R. Ismail, M. Fakhri, E. Salim, K. Khashan, Nanostructured visible-enhanced CdS/SiO2/Si heterojunction photodetectors: synthesis, characterization, and performance optimization. Phys. B 669, 415303 (2023)

    Article  Google Scholar 

  43. Z. Li, F. Davar, J. Chen, Z. Li, X. Fang, CdS/CdSO4 nanoflower-based photodetector with enhanced photoelectric performances. ACS Appl. Nano Mater. 3, 10190–10199 (2020)

    Article  CAS  Google Scholar 

  44. J. Zhang, X. Sun, J. Ma, Z. Yi, T. **an, S. Wang, G. Liu, X. Wang, H. Yang, Development of highly-efficient 0D/1D/0D dual Z-scheme CdS/ZnWO4/ZnS heterojunction photocatalysts in pollutant removal and involved mechanism. Appl. Surf. Sci. 611, 155681 (2023)

    Article  CAS  Google Scholar 

  45. H.X. Xu, J. Chen, S. Cai, Z. Long, Y. Zhang, L. Su, S. He, C. Tang, P. Liu, H. Peng, X. Fang, A real-time wearable UV-radiation monitor based on a high-performance p-CuZnS/n-TiO2 photodetector. Adv. Mater. 30, 1803165 (2018)

    Article  Google Scholar 

Download references

Funding

No fund has been received for this research study.

Author information

Authors and Affiliations

Authors

Contributions

RAI and FMA conceived of the presented idea. RAI, MAF, and AMM supervised the finding of this work. FMA, ETS, and AMM discussed the results. All authors conducted the experiments. All authors provided critical feedback and helped shape the research, analysis, and manuscript.

Corresponding author

Correspondence to Raid A. Ismail.

Ethics declarations

Conflict of interest

The authors have declared no conflict of interest.

Ethical approval

Not applicable.

Consent to participant

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher’s Note

Springer nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 32.0 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, F.M., Muhammed Ali, A.M., Ismail, R.A. et al. Investigating the influence of deposition time on nanostructured CdS film prepared by chemical bath deposition for photodetection applications. J Mater Sci: Mater Electron 34, 1906 (2023). https://doi.org/10.1007/s10854-023-11380-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11380-z

Navigation