Log in

Room-temperature multiferroicity and magnetoelectric coupling in single-phase double perovskite Ba2FeVO6

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Single-phase magnetoelectric multiferroic materials with good coupling coefficients are very few and have wide applications. Numerous structural, optical, dielectric, and magnetic studies have been conducted in iron–vanadium-based double perovskites. With this, the current work focuses on magnetoelectric coupling of iron–vanadium-based double perovskite material Ba2FeVO6. The sample is prepared through conventional solid-state reaction route and X-ray diffraction confirms multiphase structure—orthorhombic structure (86.62%) with Bb21m space group and an R-centered trigonal structure (13.38%) with a space group of R-3m. Presence of Fe2+ and Fe3+ ions is inferred from X-ray photon spectroscopy analysis. Room-temperature ferromagnetism of the sample is detected from M–H loop and ferroelectric nature from P–E loop analysis. Temperature-dependent magnetization shows that material has a high Curie temperature of 745.9 K. Moreover, magnetoelectric coupling measurement shows that the material has the property of magnetoelectric multiferroicity. The observed coupling coefficient is 6.9 mVcm−1Oe−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. M.A. Pena, J.L.G. Fierro, Ch. Reviews 101, 1981 (2001). https://doi.org/10.1021/cr980129f

    Article  CAS  Google Scholar 

  2. J.Y. Lee, J.H. Lee, S.H. Hong, Y.K. Lee, J.Y. Choi, Adv. Mater. 15, 1655 (2003). https://doi.org/10.1002/adma.200305418

    Article  CAS  Google Scholar 

  3. A. Feteira, D.C. Sinclair, I.M. Reaney, Y. Somiya, M.T. Lanagan, J. Am. Ceram. Soc. 87, 1082 (2004). https://doi.org/10.1111/j.1551-2916.2004.01082.x

    Article  CAS  Google Scholar 

  4. H. Zhangfa, L. Zhijun, H. Hua, W. Jianxin, C. Ming, C. Baohua, W. Qin, Y. Jun, G. Wanbing, L. Tongxiang, Ceram. Int. 48, 16319 (2022). https://doi.org/10.1016/j.ceramint.2022.02.182

    Article  CAS  Google Scholar 

  5. J.Y.C. Wong, L. Zhang, G. Kakarantzas, P.D. Townsend, P.J. Chandler, L.A. Boatner, J. Appl. Phys. 71, 49 (1992). https://doi.org/10.1063/1.350684

    Article  CAS  Google Scholar 

  6. S. Fusil, V. Garcia, A. Barthélémy, M. Bibes, Annu. Rev. Mater. Res.. Rev. Mater. Res. 44, 91 (2014). https://doi.org/10.1146/annurev-matsci-070813-113315

    Article  CAS  Google Scholar 

  7. M. Li, C. Dong, H. Zhou, Z. Wang, X. Wang, X. Liang, Y. Lin, N.X. Sun, I.E.E.E. Sens, Lett. 1, 1 (2017). https://doi.org/10.1109/LSENS.2017.2752216

    Article  Google Scholar 

  8. J.F. Scott, Nat. Mater. 6, 256 (2007). https://doi.org/10.1038/nmat1868

    Article  CAS  Google Scholar 

  9. N.A. Spaldin, M. Fiebig, Science 309, 391 (2005). https://doi.org/10.1126/science.1113357

    Article  CAS  Google Scholar 

  10. H. Schmid, Ferroelectrics 162, 19 (1994). https://doi.org/10.1080/00150199408245120

    Article  Google Scholar 

  11. N.A. Spaldin, S.W. Cheong, R. Ramesh, Phys. Today 63, 38 (2010). https://doi.org/10.1063/1.3502547

    Article  Google Scholar 

  12. D. Khomskii, Physics 2, 20 (2009). https://doi.org/10.1103/Physics.2.20

    Article  Google Scholar 

  13. J.B. Neaton, C. Ederer, U.V. Waghmare, N.A. Spaldin, K.M. Rabe, Phys. Rev. B 71, 014113 (2005). https://doi.org/10.1103/PhysRevB.71.014113

    Article  CAS  Google Scholar 

  14. N. Fujimura, N. Shigemitsu, T. Takahashi, A. Ashida, T. Yoshimura, H. Fukumura, H. Harima, Philos. Mag. Lett. 87, 193 (2007). https://doi.org/10.1080/09500830701250322

    Article  CAS  Google Scholar 

  15. T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima, Y. Tokura, Nature 426, 55 (2003). https://doi.org/10.1038/nature02018

    Article  CAS  Google Scholar 

  16. N. Hur, S. Park, P.A. Sharma, J.S. Ahn, S. Guha, S.W. Cheong, Nature 429, 392 (2004). https://doi.org/10.1038/nature02572

    Article  CAS  Google Scholar 

  17. W. Eerenstein, N.D. Mathur, J.F. Scott, Nature 442, 759 (2006). https://doi.org/10.1038/nature05023

    Article  CAS  Google Scholar 

  18. M.M. Vopson, Materials 10, 963 (2017). https://doi.org/10.3390/ma10080963

    Article  CAS  Google Scholar 

  19. M.M. Vopson, Crit. Rev. Solid State Mater. Sci. 40, 223 (2015). https://doi.org/10.1080/10408436.2014.992584

    Article  CAS  Google Scholar 

  20. J. Cao, Multiferroics In Perovskite and Aurivillius Structured Materials (Thesis, School of Engineering and Materials Science, Queen Mary, University of London, 2019) https://core.ac.uk/download/pdf/224797678.pdf.

  21. M.T. Anderson, K.B. Greenwood, G.A. Taylor, K.R. Poeppelmeier, J. Mater. Sci. Chem. Eng. 22, 197 (1993). https://doi.org/10.1016/0079-6786(93)90004-B

    Article  CAS  Google Scholar 

  22. G. King, P.M. Woodward, J. Mater. Chem. (2010). https://doi.org/10.1039/B926757C

    Article  Google Scholar 

  23. Y. Zhang, X. Xu, Cryst. Eng. Comm. 22, 6385 (2020). https://doi.org/10.1039/d0ce00928h

    Article  CAS  Google Scholar 

  24. Y. Shimakawa, M. Azuma, N. Ichikawa, Materials (Basel) (2011). https://doi.org/10.3390/ma4010153

    Article  Google Scholar 

  25. T. Saha-Dasgupta, Mater. Res. Express 7, 014003 (2020). https://doi.org/10.1088/2053-1591/ab6293

    Article  CAS  Google Scholar 

  26. N. Hayashi, T. Yamamoto, H. Kageyama, M. Nishi, Y. Watanabe, T. Kawakami, Y. Matsushita, A. Fujimori, and M. Takano, Angew. Chem., Int. Ed. Engl. 50, 12547 (2011) https://doi.org/10.1002/anie.201105276.

  27. T. Matsui, H. Tanaka, N. Fujimura, T. Ito, H. Mabuchi, Appl. Phys. Lett. 81, 2764 (2002). https://doi.org/10.1063/1.1513213

    Article  CAS  Google Scholar 

  28. S. Chakraverty, T. Matsuda, N. Ogawa, H. Wadati, E. Ikenaga, S. Chakraverty, T. Matsuda, N. Ogawa, H. Wadati, E. Ikenaga, M. Kawasaki, Appl. Phys. Lett. 103, 142416 (2013). https://doi.org/10.1063/1.4824210

    Article  CAS  Google Scholar 

  29. Y.U.N. Wu, G. Cao, J. Mater. Sci. Lett. 9, 267 (2000). https://doi.org/10.1023/a:1006735422928

    Article  Google Scholar 

  30. A.R. Chaudhuri, A. Laha, S.B. Krupanidhi, Solid State Commun.Commun. 133, 611 (2005). https://doi.org/10.1016/j.ssc.2004.10.035

    Article  CAS  Google Scholar 

  31. R.A. Candeia, M.A.F. Souza, M.I.B. Bernardi, S.C. Maestrelli, Ceram. Int. 33, 521 (2007). https://doi.org/10.1016/j.ceramint.2005.10.018

    Article  CAS  Google Scholar 

  32. P. Parhi, V. Manivannan, S. Kohli, P. Mccurdy, Bull. Mater. Sci. 31, 885 (2008). https://doi.org/10.1007/s12034-008-0141-y

    Article  CAS  Google Scholar 

  33. Z. Pei, X. Zhou, K. Leng, W. **a, Y. Wei, X. Zhu, AIP Adv. 10, 075320 (2020). https://doi.org/10.1063/5.0011677

    Article  CAS  Google Scholar 

  34. Y. Lu, Z. Pei, H. Wu, K. Leng, W. **a, X. Zhu, J. Mater. Sci. 55, 4179 (2020). https://doi.org/10.1007/s10853-019-04329-3

    Article  CAS  Google Scholar 

  35. M. Basith, A. Billah, M. Jalil et al., J. Alloy. Compd. 694, 792 (2016). https://doi.org/10.1016/j.jallcom.2016.10.018

    Article  CAS  Google Scholar 

  36. X. Li, Y. Wang, W. Liu, G. Jiang, C. Zhu, Mater. Lett. 85, 25 (2012). https://doi.org/10.1016/j.matlet.2012.06.107

    Article  CAS  Google Scholar 

  37. J. Shim, H. Na, A. Jha, W. Jang, D. Jeong, I.W. Nah, B. Jeon, H. Roh, J. Chem. Eng. 306, 908 (2016). https://doi.org/10.1016/j.cej.2016.08.030

    Article  CAS  Google Scholar 

  38. K.M. Krishnan, Fundam. Appl. Magn. Mater. 42, 540 (2017)

    Google Scholar 

  39. Y. Zhang, X. Xu, AIP Adv. 10, 035220 (2020). https://doi.org/10.1063/1.5144241

    Article  CAS  Google Scholar 

  40. Y. Zhang, X. Xu, Appl. Phys. A Mater. 126, 341 (2020). https://doi.org/10.1007/s00339-020-03503-8

    Article  CAS  Google Scholar 

  41. S. Blundell, Magnetism in condensed matter, 1st edn. (Oxford University Press Inc., New York, 2001)

    Google Scholar 

  42. S. Bhattacharjee, B. Mohanty, N.C. Nayak, R.K. Parida, B.N. Parida, Mater. Sci. Semicond. Process.Semicond. Process. 123, 105503 (2020). https://doi.org/10.1016/j.mssp.2020.105503

    Article  CAS  Google Scholar 

  43. H. Singh, J. Kaur, S.N. Appl, Appl. Sci. (2020). https://doi.org/10.1007/s42452-020-3140-2

    Article  Google Scholar 

  44. D. Triyono, Y. Yunida, R.A. Rafsanjani, Materials. 14, 7501 (2021). https://doi.org/10.3390/ma14247501

    Article  CAS  Google Scholar 

  45. N.A. Spaldin, Magnetic materials fundamentals and applications, 2nd edn. (Cambridge University Press, Cambridge, 2010)

    Book  Google Scholar 

  46. Y. Henry, K. Ounadjela, L. Piraux, S. Dubois, J.M. George, J.L. Duvail, Eur. Phys. J. B. 20, 35 (2001). https://doi.org/10.1007/s100510170283

    Article  CAS  Google Scholar 

  47. G.H. Jaffari, F. Mumtaz, S.I. Shah, J. Magn. Magn. Mater.Magn. Magn. Mater. 537, 168198 (2021). https://doi.org/10.1016/j.jmmm.2021.168198

    Article  CAS  Google Scholar 

  48. S. Hussain, S.K. Hasanain, H.G. Jaffari, N.Z. Ali, M. Siddique, J. Mater. Chem. C (2017). https://doi.org/10.1039/C7TC02956J

    Article  Google Scholar 

  49. B. Ahmmad, M.Z. Islam, A. Billah, M.A. Basith, J. Phys. D Appl. Phys. 49, 095001 (2016). https://doi.org/10.1088/0022-3727/49/9/095001

    Article  CAS  Google Scholar 

  50. K. Leng, Q. Tang, Y. Wei, L. Yang, Y. **e, Z. Wu, X. Zhu, AIP Adv. 10, 120701 (2020). https://doi.org/10.1063/5.0031196

    Article  CAS  Google Scholar 

  51. Y.T.K.I. Kobayashi, T. Kimura, H. Sawada, K. Terakura, Nature 395, 677 (1998). https://doi.org/10.1038/27167

    Article  CAS  Google Scholar 

  52. D. Serrate, J.M. De Teresa, P.A. Algarabel, C. Marquina, L. Morellon, J. Blasco, M.R. Ibarra, J. Magn. Magn. Mater.Magn. Magn. Mater. 290, 843 (2005). https://doi.org/10.1016/j.jmmm.2004.11.390

    Article  CAS  Google Scholar 

  53. S. Mugiraneza, A.M. Hallas, Commun. Phys.. Phys. 5, 95 (2022). https://doi.org/10.1038/s42005-022-00853-y

    Article  Google Scholar 

  54. S. Ravi, C. Senthilkumar, Ceram. Int. 43, 14441 (2017). https://doi.org/10.1016/j.ceramint.2017.07.217

    Article  CAS  Google Scholar 

  55. H. Zhao, H. Kimura, Q. Yao, Y. Du, Z. Cheng, X. Wang, Ferroelectrics (2011). https://doi.org/10.5772/17093

    Article  Google Scholar 

  56. S. Nv, K.B. Vinayakumar, K.K. Nagaraja, Coatings 10, 12 (2020). https://doi.org/10.3390/coatings10121221

    Article  CAS  Google Scholar 

  57. M. Giraldo, Q.N. Meier, A. Bortis, D. Nowak, N.A. Spaldin, M. Fiebig, M.C. Weber, T. Lottermoser, Nat. Commun.Commun. 12, 1 (2021). https://doi.org/10.1038/s41467-021-22587-1

    Article  CAS  Google Scholar 

  58. N. Lee, Y.J. Choi, M. Ramazanoglu, W. Ratcliff, V. Kiryukhin, S.W. Cheong, Phys. Rev. B 84, 3 (2011). https://doi.org/10.1103/PhysRevB.84.020101

    Article  CAS  Google Scholar 

  59. D. Senff, P. Link, N. Aliouane, D.N. Argyriou, M. Braden, Phys. Rev. B 77, 1 (2008). https://doi.org/10.1103/PhysRevB.77.174419

    Article  CAS  Google Scholar 

  60. E.V. Ramana, M.A. Valente, Dalton Trans. 43, 9934 (2014). https://doi.org/10.1039/C4DT00956H

    Article  CAS  Google Scholar 

  61. B.D. Cullity, Fundam Magnetostrict 23, 35 (1971). https://doi.org/10.1007/BF03355677

    Article  Google Scholar 

  62. G.S.K.A. Hanumaiah, T. Bhimasankaram, S.V. Suryanarayana, Bull. Mater. Sci. 17, 405 (1994). https://doi.org/10.1007/BF02745228

    Article  CAS  Google Scholar 

  63. R.P. Paul, A.K. Rajarajan, S. Kuila, P.N. Vishwakarma, B.P. Mandal, J. Magn. Magn. Mater.Magn. Magn. Mater. 538, 168253 (2021). https://doi.org/10.1016/j.jmmm.2021.168253

    Article  CAS  Google Scholar 

  64. S. Kumari, D. K. Pradhan, N. Ortega, and K. Pradhan, (2016), https://arxiv.org/ftp/arxiv/papers/1603/1603.07643.pdf

Download references

Acknowledgements

The authors are very much obliged to CSIR-NIIST Thiruvananthapuram, CLIF Thiruvananthapuram, and IIUCNN Kottayam for giving up experimental facilities.

Author information

Authors and Affiliations

Authors

Contributions

All persons who meet authorship criteria are listed as authors, and all authors certify that they have participated sufficiently in the work to take public responsibility for the content, including participation in the concept, design, analysis, writing, or revision of the manuscript. VSV contributed to Conceptualization, Methodology, Formal analysis, Investigation, and Writing and preparation of the original draft. RR contributed to Conceptualization, Methodology, Formal analysis, Resources, and Writing and preparation of original draft. NK contributed to Resources and Formal analysis MMD contributed to Formal analysis. SS contributed to Conceptualization, Formal analysis, Validation, Supervision, and Writing, Reviewing, & Editing of the manuscript.

Corresponding author

Correspondence to S. Sagar.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Human and animal rights

The present work entitled “Room-temperature magnetoelectric coupling in single–phase double perovskite Ba2FeVO6” does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Veena, V.S., Revathy, R., Kalarikkal, N. et al. Room-temperature multiferroicity and magnetoelectric coupling in single-phase double perovskite Ba2FeVO6. J Mater Sci: Mater Electron 34, 1966 (2023). https://doi.org/10.1007/s10854-023-11295-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11295-9

Navigation