Log in

Thermoluminescence glow curve analysis and kinetic parameters evaluation of different ions co-doped Ca12Al14O33 nanophosphor after γ-irradiation

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this paper, different ions incorporated Ca12Al14O33 nanophosphors, labeled as C0.5Ti-0.5LaA, C0.1La-0.03CuA, C0.2Cr-0.08EuA and C0.2Cr-0.07CeA (where added ions in mol%), were synthesized by sol–gel method and their phase purity were characterized by X-ray diffraction. Their thermoluminescence (TL) response were checked using γ—test dose of 5 Gy and we found that sample C0.2Cr-0.07CeA has the best TL response. Good linearity dependence was found at 0.5 up to 22 Gy with lowest detectable dose of 60 µGy. Analysis of the main dosimetric peaks using different experimental techniques indicates that trap depth (E) and pre-exponential factor (s) are in the average range of 0.39–1.0 eV and 2.09 × 1014–2.60 × 1014 s–1, respectively. Our findings elucidated that C0.2Cr-0.07CeA sample can be recommended as a suitable γ-ray dosimeter especially for the skeletal dosimetric purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets collected and/or analyzed during this work are available from the corresponding author on request.

References

  1. J.L. Kim, J.I. Lee, S.Y. Chang, K.S. Chung, H.S. Choe, Radiat. Meas. 38(4–6), 435–438 (2004). https://doi.org/10.1016/j.radmeas.2003.12.018

    Article  CAS  Google Scholar 

  2. S.S. Shinde, B.S. Dhabekar, T.K. Gundu Rao, B.C. Bhatt, J. Phys. D: Appl. Phys. 34(17), 2683 (2001). https://doi.org/10.1088/0022-3727/34/17/317

    Article  CAS  Google Scholar 

  3. M.S. Akselrod, E.A. Gorelova, Nuclear Track Radiat. Measure 21(1), 143–146 (1993). https://doi.org/10.1016/1359-0189(93)90065-H

    Article  CAS  Google Scholar 

  4. R.K. Gartia, M.N. Singh, L.P. Chanu, T.B. Singh, J. Lumin. 219, 116867 (2020). https://doi.org/10.1016/j.jlumin.2019.116867

    Article  CAS  Google Scholar 

  5. I. El Mesady, N. Khaled, A. Hussein, H. El Samman, S. Alawsh, Luminescence 31, 1433–1437 (2016). https://doi.org/10.1002/bio.3125

    Article  CAS  Google Scholar 

  6. I.M. Nagpure, K.N. Shinde, V. Kumar, O.M. Ntwaeaborwa, S.J. Dhoble, H.C. Swart, J. Alloys. Compd. 492, 384–388 (2010). https://doi.org/10.1016/j.jallcom.2009.11.110

    Article  CAS  Google Scholar 

  7. V.S.M. de Barros, W.M. de Azevedo, H.J. Khoury, P.L. Filho, Radiat. Meas. 43(2–6), 345–348 (2008). https://doi.org/10.1016/j.radmeas.2007.11.040

    Article  CAS  Google Scholar 

  8. A. Mohamed, A. Salah, A. Ashour, H. Hafez, N. El-Faramawy, J. Lumin. 196, 449–454 (2018). https://doi.org/10.1016/j.jlumin.2018.01.001

    Article  CAS  Google Scholar 

  9. Z.S. Khan, N.B. Ingale, S.K. Omanwar, Mater. Lett. 158, 143–146 (2015). https://doi.org/10.1016/j.matlet.2015.05.038

    Article  CAS  Google Scholar 

  10. L.H. Jiang, Y.L. Zhang, C.Y. Li, J.Q. Hao, Q. Su, Mater. Lett. 61, 5107–5109 (2007). https://doi.org/10.1016/j.matlet.2007.04.016

    Article  CAS  Google Scholar 

  11. N.N. Elewa, N. El-Faramawy, Mater. Lett. 343, 134392 (2023). https://doi.org/10.1016/j.matlet.2023.134392

    Article  CAS  Google Scholar 

  12. J.E. Medvedeva, A.J. Freeman, Appl. Phys. Lett. 85, 955–957 (2004). https://doi.org/10.1063/1.1781362

    Article  CAS  Google Scholar 

  13. Z. Li, J. Yang, J.G. Hou, Q. Zhu, Angew. Chem. Int. Ed. 43, 6479–6482 (2004). https://doi.org/10.1002/anie.200461200

    Article  CAS  Google Scholar 

  14. P.L.C. Filho, R.L.A.T. Menezes, W.M. Azevedo, Radiat. Meas. 71, 65–68 (2014). https://doi.org/10.1016/j.radmeas.2014.03.008

    Article  CAS  Google Scholar 

  15. P.V. Sushko, A.L. Shluger, K. Hayashi, M. Hirano, H. Hosono, Phys. Rev. Lett. 91, 126401 (2003). https://doi.org/10.1103/PhysRevLett.91.126401

    Article  CAS  Google Scholar 

  16. M.M. Rashad, A.G. Mostafa, D.A. Rayan, J. Mater. Sci.: Mater. Electron. 27, 2614–2623 (2016). https://doi.org/10.1007/s10854-015-4067-z

    Article  CAS  Google Scholar 

  17. R. Ianoş, I. Lazău, C. Păcurariu, P. Barvinschi, Cem. Concr. Res. 39, 566–572 (2009). https://doi.org/10.1016/j.cemconres.2009.03.014

    Article  CAS  Google Scholar 

  18. M. Zahedi, A.K. Ray, D.S. Barratt, J. Phys. D: Appl. Phys. 41, 035404 (2008). https://doi.org/10.1088/0022-3727/41/3/035404

    Article  CAS  Google Scholar 

  19. R. Chen, S.W.S. McKeever, Theory of thermoluminescence and related phenomena (World Scientific, 1997)

    Book  Google Scholar 

  20. N. Kucuk, A.H. Gozel, M. Yüksel, T. Dogan, M. Topaksu, Appl. Radiat. Iso. 104, 186–191 (2015). https://doi.org/10.1016/j.apradiso.2015.07.007

    Article  CAS  Google Scholar 

  21. M.S. Rasheedy, M.A. El-Sherif, M.A. Hefni, Radiat. Effects Defects Solids 161(10), 579–590 (2006). https://doi.org/10.1080/10420150600879732

    Article  CAS  Google Scholar 

  22. C.E. May, J.A. Partridge, J. Chem. Phys. 40(5), 1401–1409 (1964). https://doi.org/10.1063/1.1725324

    Article  CAS  Google Scholar 

  23. C. Muntoni, A. Ricci, A. Sergi, Ric. Sci. 9, 762–764 (1968)

    Google Scholar 

  24. V. Pagonis, G. Kitis, C. Furetta, Numerical and Practical Exercises in Thermoluminescence (Springer, Berlin, 2006), p.156

    Google Scholar 

  25. A.H. Booth, Can. J. Chem. 32, 214 (1954)

    Article  CAS  Google Scholar 

  26. I.A. Parfianovitch, J. Exp. Theor. Phys. 26, 696 (1954)

    Google Scholar 

  27. G. Kitis, J.W.N. Tuyn, J. Phys. D: Appl. Phys. 31, 2065 (1998). https://doi.org/10.1088/0022-3727/31/16/017

    Article  CAS  Google Scholar 

  28. D.J. Daniel, I.R. Panday, H.J. Kim, S. Kim, U. Fawad, J. Rare Earths 36, 1024 (2018). https://doi.org/10.1016/j.jre.2018.02.011

    Article  CAS  Google Scholar 

  29. I.A. El-Mesady, A.E. Hussein, H.M. El-Samman, S.A. Alawsh, Iso. Radiat. Res. 46(2), 277–290 (2014)

    Google Scholar 

  30. S.R. Manohara, S.M. Hanagodimath, L. Gerward, Radiat. Phys. Chem. 79(5), 575–582 (2010). https://doi.org/10.1016/j.radphyschem.2010.01.002

    Article  CAS  Google Scholar 

  31. V.P. Singh, N.M. Badiger, Radiat. Phys. Chem. 104, 61–67 (2014). https://doi.org/10.1016/j.radphyschem.2013.11.025

    Article  CAS  Google Scholar 

  32. M.M. Rafiei, H. Tavakoli-Anbaran, M. Kurudirek, Radiat. Phys. Chem. 177, 109118 (2020). https://doi.org/10.1016/j.radphyschem.2020.109118

    Article  CAS  Google Scholar 

  33. E. Şakar, Ö.F. Özpolat, B. Alım, M.I. Sayyed, M. Kurudirek, Radiat. Phys. Chem. 166, 108496 (2020). https://doi.org/10.1016/j.radphyschem.2019.108496

    Article  CAS  Google Scholar 

  34. D. Lee, L. Kogel, S.G. Ebbinghaus, I. Valov, H.-D. Wiemhoefer, M. Lerchd, J. Janek, Chem. Phys. 11, 3105–3114 (2009). https://doi.org/10.1039/B818474G

    Article  CAS  Google Scholar 

  35. K. Hayashi, M. Hirano, S. Matsuishi, H. Hosono, J. Am. Chem. Soc 124, 738–739 (2002). https://doi.org/10.1021/jp050807j

    Article  CAS  Google Scholar 

  36. J.E. Medvedeva, A.J. Freeman, Appl. Phys. Lett 955, 10–13 (2013). https://doi.org/10.1063/1.1781362

    Article  CAS  Google Scholar 

  37. M. Maghrabi, D.E. Arafah, Phys. Stat. Sol. 195, 459–467 (2003). https://doi.org/10.1002/pssa.200305938

    Article  Google Scholar 

  38. A.R. Kadam, G.C. Mishra, S. J. Dhoble 46(1), 132–155 (2020). https://doi.org/10.1016/j.ceramint.2019.08.242

    Article  CAS  Google Scholar 

  39. N. Kawano, N. Kawaguchi, G. Okada, Y. Fujimoto, T. Yanagida, J. Non-Cryst. Solids 482, 154–159 (2018). https://doi.org/10.1016/j.jnoncrysol.2017.12.030

    Article  CAS  Google Scholar 

  40. S.R. Rahangdale, U.A. Palikundwar, S.P. Wankhede, B. Dhabekar, S. Kadam, S.V. Moharil, J. Lumin. 167, 80–84 (2015). https://doi.org/10.1016/j.jlumin.2015.05.047

    Article  CAS  Google Scholar 

  41. I.A. El-Mesady, S.A. Alawsh, H.A. Othman, J. Lumin. 227, 117555 (2020). https://doi.org/10.1016/j.jlumin.2020.117555

    Article  CAS  Google Scholar 

  42. H.A. Othman, A. Hussein, H. El-Samman, S.A. Alawsh, I.A. El-Mesady, Ceram. Int. 47, 27789–27802 (2021). https://doi.org/10.1016/j.ceramint.2021.06.206

    Article  CAS  Google Scholar 

  43. C. Furetta, Thermally disconnected traps: handbook of Thermoluminescence (World Scientific, Singapore, 2003), pp.401–434

    Google Scholar 

Download references

Funding

This research was funded by the Researchers supporting project number (RSPD2023R762), King Saud University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, SAA, MA and SMQ; Formal analysis, SMQ, NA and AAA; Investigation, SAA, MA and NA; Resources, SMQ and NA, Visualization, SAA, SMQ, AAA and MA; Funding acquisition, SMQ, NA and AAA. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to S. A. Alawsh.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qaid, S.M.H., Alkadi, M., Asemi, N.N. et al. Thermoluminescence glow curve analysis and kinetic parameters evaluation of different ions co-doped Ca12Al14O33 nanophosphor after γ-irradiation. J Mater Sci: Mater Electron 34, 1806 (2023). https://doi.org/10.1007/s10854-023-11213-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11213-z

Navigation