Log in

Elucidating the role of CZTS QDs and CNTs for boosting the photoelectrochemical response of TiO2

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This work highlights the potential of carbon nanotubes (CNTs) and Cu2ZnSnS4 quantum dots (CZTS QDs) for enhancing the photoelectrochemical properties of TiO2 thin film. A combination of eco-friendly materials with a simple approach to synthesis makes the system effective. The photoelectrodes have been prepared by depositing CZTS QDs over both TiO2 as well as TiO2–CNT composite. An enhanced photocurrent density of 1.5 mA cm−2 at 1.23 V/RHE has been observed for CZTS QDs modified TiO2–CNT composite which is 15-fold increased in contrast to pristine TiO2. Here, CZTS QDs, as well as CNTs both, provide a widening of the light absorption characteristics of TiO2 from UV to the visible region. Further, the p–n junction created between CZTS QDs and TiO2–CNT plays a crucial role in charge separation process through electric field generated at the junction. Various characterization techniques have been used for structural, morphological and optical properties analysis. The increased photoelectrochemical (PEC) performance of photoelectrode has been justified with the help of UV–Vis spectra, Mott–Schottky, Nyquist and transient open circuit potential plots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. M. Safaei, M.R. Shishehbore, J. Mater. Sci. 56, 17942–17978 (2021). https://doi.org/10.1007/s10853-021-06428-6

    Article  CAS  Google Scholar 

  2. C. Ros, T. Andreu, J.R. Morante, J. Mater. Chem. A 8(21), 10625–10669 (2020). https://doi.org/10.1039/D0TA03271A

    Article  CAS  Google Scholar 

  3. T.N. Trung, N.T.T. Kieu, D.Q. Ho, D.B. Seo, E.T. Kim, J. Mater. Sci. 58, 2156–2169 (2023). https://doi.org/10.1007/s10853-023-08158-3

    Article  CAS  Google Scholar 

  4. R.V.D. Krol, Photoelectrochemical hydrogen production, in Principles of Photoelectrochemical Cells. ed. by R.V.D. Krol, M. Gratzel (Springer, New York, 2012), pp.13–67

    Google Scholar 

  5. E.L. Miller, Solar hydrogen production by photoelectrochemical water splitting: the promise and challenge, in On Solar Hydrogen and Nanotechnology. ed. by L. Vayssieres (Wiley, New York, 2009), pp.3–35

    Google Scholar 

  6. A. Ikram, S. Sahai, S. Rai, S. Dass, R. Shrivastav, V.R. Satsangi, Phys. Chem. Chem. Phys. 18(23), 15815–15821 (2016). https://doi.org/10.1039/C6CP00854B

    Article  CAS  Google Scholar 

  7. E. Vahidzadeh, S. Zeng, K.M. Alam, P. Kumar, S. Riddell, N. Chaulagain, S. Gusarov, A.E. Kobryn, K. Shankar, ACS Appl. Mater. Interfaces. 13(36), 42741–42752 (2021). https://doi.org/10.1021/acsami.1c10698

    Article  CAS  Google Scholar 

  8. M. Israr, F. Raza, N. Nazar et al., Appl. Nanosci. 10, 3805–3817 (2020). https://doi.org/10.1007/s13204-020-01474-z

    Article  CAS  Google Scholar 

  9. Z. Hou, Y. Li, J. Liu, H. Shen, X. Huo, New J. Chem. 45(3), 1743–1752 (2021). https://doi.org/10.1039/D0NJ05250G

    Article  CAS  Google Scholar 

  10. S. Rai, A. Ikram, S. Sahai, S. Dass, R. Shrivastav, V.R. Satsangi, Int. J. Hydrog. Energy 42(7), 3994–4006 (2017). https://doi.org/10.1016/j.ijhydene.2016.10.024

    Article  CAS  Google Scholar 

  11. W. Zhang, G. Li, H. Liu, J. Chen, S. Ma, T. An, Environ. Sci. Nano 6(3), 948–958 (2019). https://doi.org/10.1039/C8EN01375F

    Article  CAS  Google Scholar 

  12. G.S. Selopal, M. Mohammadnezhad, L.V. Besteiro, O. Cavuslar, J. Liu, H. Zhang, F. Rosei, Adv. Sci. 7(20), 2001864 (2020). https://doi.org/10.1002/advs.202001864

    Article  CAS  Google Scholar 

  13. D. Chaudhary, S. Singh, V.D. Vankar, N. Khare, Int. J. Hydrog. Energy 42(12), 7826–7835 (2017). https://doi.org/10.1016/j.ijhydene.2016.12.036

    Article  CAS  Google Scholar 

  14. S. Kumari, Y.S. Chaudhary, S.A. Agnihotry, C. Tripathi, A. Verma, D. Chauhan, V.R. Satsangi, Int. J. Hydrog. Energy 32(9), 1299–1302 (2007). https://doi.org/10.1016/j.ijhydene.2006.07.017

    Article  CAS  Google Scholar 

  15. W.C. Liu, B.L. Guo, X.S. Wu, F.M. Zhang, C.L. Mak, K.H. Wong, J. Mater. Chem. A 1(9), 3182–3186 (2013). https://doi.org/10.1039/C3TA00357D

    Article  CAS  Google Scholar 

  16. L.J. Diguna, Q. Shen, J. Kobayashi, T. Toyoda, Appl. Phys. Lett. 91(2), 023116 (2007). https://doi.org/10.1063/1.2757130

    Article  CAS  Google Scholar 

  17. P. Makuła, M. Pacia, W. Macyk, J. Phys. Chem. Lett. 9(23), 6814–6817 (2018). https://doi.org/10.1021/acs.jpclett.8b02892

    Article  CAS  Google Scholar 

  18. A.W. Bott, Curr. Sep. 17, 87–92 (1998)

    CAS  Google Scholar 

  19. A. Zaban, M. Greenshtein, J. Bisquert, ChemPhysChem 4(8), 859–864 (2003). https://doi.org/10.1002/cphc.200200615

    Article  CAS  Google Scholar 

  20. H. Dotan, N. Mathews, T. Hisatomi, M. Grätzel, A. Rothschild, J. Phys. Chem. Lett. 5(19), 3330–3334 (2014). https://doi.org/10.1021/jz501716g

    Article  CAS  Google Scholar 

  21. F. Su, J. Lu, Y. Tian, X. Ma, J. Gong, Phys. Chem. Chem. Phys. 15(29), 12026–12032 (2013). https://doi.org/10.1039/C3CP51291F

    Article  CAS  Google Scholar 

  22. V. Agrawal, K. Jain, R. Pasricha, S. Chand, J. Nanopart. (2013). https://doi.org/10.1155/2013/685836

    Article  Google Scholar 

  23. M.A. Basit, F. Raza, Sumayya, G. Karima, I. Ali, S. Butt, J. Mater. Sci. 31, 17563–17573 (2020). https://doi.org/10.1007/s10854-020-04312-8

  24. M. Ocana, J.V. Garcia-Ramos, C.J. Serna, J. Am. Ceram. Soc. 75(7), 2010–2012 (1992). https://doi.org/10.1111/j.1151-2916.1992.tb07237.x

    Article  CAS  Google Scholar 

  25. A.D. Dobrzańska-Danikiewicz, W. Wolany, D. Łukowiec, K. Jurkiewicz, P. Niedziałkowski, Nanomater. Nanotechnol. 7, 1847980417707173 (2017). https://doi.org/10.1177/1847980417707173

    Article  CAS  Google Scholar 

  26. R. Ahmad, M. Distaso, H. Azimi, C.J. Brabec, W. Peukert, J. Nanopart. Res. 15, 1–16 (2013). https://doi.org/10.1007/s11051-013-1886-9

    Article  CAS  Google Scholar 

  27. D. Thangaraju, R. Karthikeyan, N. Prakash, S.M. Babu, Y. Hayakawa, Dalton Trans. 44(33), 15031–15041 (2015). https://doi.org/10.1039/C5DT01542A

    Article  CAS  Google Scholar 

  28. M. Dimitrievska, F. Boero, A.P. Litvinchuk, S. Delsante, G. Borzone, A. Perez-Rodriguez, V. Izquierdo-Roca, Inorg. Chem. 56(6), 3467–3474 (2017). https://doi.org/10.1021/acs.inorgchem.6b03008

    Article  CAS  Google Scholar 

  29. L. Arora, V.N. Singh, G. Partheepan et al., Appl. Nanosci. 7, 499 (2017). https://doi.org/10.1007/s13204-015-0404-z

    Article  CAS  Google Scholar 

  30. M.B. Poudel, C. Yu, H.J. Kim, Catalysts 10(5), 546 (2020). https://doi.org/10.3390/catal10050546

    Article  CAS  Google Scholar 

  31. H.A. Park, S. Liu, Y. Oh, P.A. Salvador, G.S. Rohrer, M.F. Islam, ACS Nano 11(2), 2150–2159 (2017). https://doi.org/10.1021/acsnano.6b08387

    Article  CAS  Google Scholar 

  32. J.X. Xu, Y. Yuan, M. Liu, S. Zou, O. Chen, D. Zhang, Anal. Chem. 92(7), 5346–5353 (2020). https://doi.org/10.1021/acs.analchem.0c00016

    Article  CAS  Google Scholar 

  33. B. Klahr, S. Gimenez, F. Fabregat-Santiago, T. Hamann, J. Bisquert, J. Am. Chem. Soc. 134(9), 4294–4302 (2012). https://doi.org/10.1021/ja210755h

    Article  CAS  Google Scholar 

  34. M. Muhibbullah, A.M.A. Haleem, Trans. Mater. Res. Soc. Jpn 40(3), 247–252 (2015). https://doi.org/10.14723/tmrsj.40.247

    Article  CAS  Google Scholar 

  35. M. Zhong, T. Hisatomi, Y. Kuang, J. Zhao, M. Liu, A. Iwase, K. Domen, J. Am. Chem. Soc. 137(15), 5053–5060 (2015). https://doi.org/10.1021/jacs.5b00256

    Article  CAS  Google Scholar 

  36. J. Su, P. Geng, X. Li, Q. Zhao, X. Quan, G. Chen, Nanoscale 7(39), 16282–16289 (2015). https://doi.org/10.1039/C5NR04562B

    Article  CAS  Google Scholar 

  37. C. Liu, T. Zhang, D. Zhao, C. Zhang, G. Ou, H. **, Z. Chen, J. Mater. Sci. 32, 7061–7072 (2021). https://doi.org/10.1007/s10854-021-05416-5

    Article  CAS  Google Scholar 

  38. D.S. Ellis, Y. Piekner, D.A. Grave, P. Schnell, A. Rothschild, Front. Energy Res. 9, 924 (2022). https://doi.org/10.3389/fenrg.2021.726069

    Article  Google Scholar 

  39. M. Grätzel, Nature 414(6861), 338–344 (2001). https://doi.org/10.1038/35104607

    Article  Google Scholar 

  40. M. Sridharan, P. Kamaraj, Y.S. Huh, S. Devikala, M. Arthanareeswari, J.A. Selvi, E. Sundaravadivel, Catal. Sci. Technol. 9(14), 3686–3696 (2019). https://doi.org/10.1039/C9CY00429G

    Article  CAS  Google Scholar 

Download references

Acknowledgements

One of the authors (Ashi Ikram) is grateful for the financial support provided by University Grants Commission (UGC) New Delhi, India under Dr. D. S. Kothari Postdoctoral Fellowship Scheme; vide section No.F.4-2/2006 (BSR)/PH/19-20/0067 to carry out the research. Authors are thankful to Central Instrumentation facility (CIF), Jamia Millia Islamia, New Delhi and IIT, Delhi for Raman spectroscopy and HRTEM characterizations respectively. We are also thankful to Prof. Vibha R. Satsangi, Head, Deptt. of Physics and Comp. Science, and Prof. Sahab Dass, Head, Deptt. of Chemistry, Dayalbagh Educational Institute, Agra for utilization of their characterization facilities like FESEM, Potentiostat and UV–vis diffuse reflectance spectrometer.

Funding

This work was supported by University Grants Commission (UGC) New Delhi, India under Dr. D. S. Kothari Postdoctoral Fellowship Scheme; vide section No.F.4-2/2006 (BSR)/PH/19-20/0067.

Author information

Authors and Affiliations

Authors

Contributions

AI is responsible for conceptualization, methodology, analysis and investigation, writing and visualization. MZ is responsible for conceptualization, Writing—Review and Editing, and supervision. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ashi Ikram.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 667 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ikram, A., Zulfequar, M. Elucidating the role of CZTS QDs and CNTs for boosting the photoelectrochemical response of TiO2. J Mater Sci: Mater Electron 34, 1769 (2023). https://doi.org/10.1007/s10854-023-11141-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11141-y

Navigation