Log in

A novel design of fast response Mn–Ni–Cu–Fe–O microbead thermistors for radiosonde

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Radiosondes play a vital role in meteorological detection by serving as essential hardware support for collecting critical climatic data. Temperature sensor is of particular importance in radiosondes. To enhance the response speed of the temperature sensors, a microbead thermistor, encapsulated with insulation layer and reflective layer, has been fabricated in this paper. The resulting microbead thermistors exhibit resistance values ranging from 60 kΩ to 0.5 kΩ across temperatures spanning from − 80 °C to 60 °C. Notably, the response time of this thermistor is 0.45 s in still air, which is shorter compared to similar products. Consequently, this microbead thermistor with fast response time can be used in temperature measurement of meteorological detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

We declare that all data generated or analyzed during this study are included in this published article.

References

  1. G.E. Bodeker, S. Bo**ski, D. Cimini, R.J. Dirksen, M. Haeffelin, J.W. Hannigan, D.F. Hurst, T. Leblanc, F. Madonna, M. Maturilli, A.C. Mikalsen, R. Philipona, T. Reale, D.J. Seidel, D.G.H. Tan, P.W. Thorne, H. Vömel, J. Wang, Reference upper-air observations for climate: from concept to reality. Bull. Am. Meteorol. Soc. 97(1), 123–135 (2016). https://doi.org/10.1175/bams-d-14-00072.1

    Article  Google Scholar 

  2. H. Cao, M. Liu, X. Liu, Z. Wang, Y. Tang, Research on solar radiation error of sounding temperature sensor. IOP Conf. Ser. 300(3), 032021 (2019). https://doi.org/10.1088/1755-1315/300/3/032021

    Article  Google Scholar 

  3. S.A. Rahayu, R. Sunarya, E. Maryadi, L. Toersilowati, L.R. Triani, C.C. Munthe, Performance analysis of platinum wire temperature sensor for Radiosonde, in Proceedings of the International Conference on Radioscience, Equatorial Atmospheric Science and Environment and Humanosphere Science. (Springer, Singapore, 2022), pp.371–382. https://doi.org/10.1007/978-981-19-0308-3_31

    Chapter  Google Scholar 

  4. M. Rosoldi, G. Coppa, A. Merlone, C. Musacchio, F. Madonna, Intercomparison of Vaisala RS92 and RS41 radiosonde temperature sensors under controlled laboratory conditions. Atmos. Meas. Tech. Discuss. (2021). https://doi.org/10.5194/amt-2021-337

    Article  Google Scholar 

  5. S.-W. Lee, B.I. Choi, J.C. Kim, S.-B. Woo, S. Park, S.G. Yang, Y.-G. Kim, Importance of air pressure in the compensation for the solar radiation effect on temperature sensors of radiosondes. Meteorol. Appl. 23(4), 691–697 (2016). https://doi.org/10.1002/met.1592

    Article  Google Scholar 

  6. A. Feteira, Negative temperature coefficient resistance (NTCR) ceramic thermistors: an industrial perspective. J. Am. Ceram. Soc. 92(5), 967–983 (2009). https://doi.org/10.1111/j.1551-2916.2009.02990.x

    Article  CAS  Google Scholar 

  7. P. Huo, J. Wang, Y. Liu, Y. Yan, Z. Liu, C. Shi, A. Chang, J. Yao, Formation of a high stability NTC thick film by low-temperature sintering of Co2.77Mn1.71Fe1.10Zn0.42O8 ceramics containing Bi2O3–B2O3–SiO2–ZnO glass frits. Sens. Actuators A 347, 113951 (2022). https://doi.org/10.1016/j.sna.2022.113951

    Article  CAS  Google Scholar 

  8. H. Li, H. Zhang, A. Chang, X. Ma, J. **e, L. Yang, Fast response and high stability Mn–Co–Ni–Al–O NTC microbeads thermistors. J. Am. Ceram. Soc. 104(8), 3811–3817 (2021). https://doi.org/10.1111/jace.17818

    Article  CAS  Google Scholar 

  9. L. Liu, Y. Zhou, R. Zheng, M. Gao, P. Zhao, A. Chang, Low-temperature synthesis and negative temperature coefficient conductivity properties of Mn–Ni–Cu–O spinel ceramics. J. Mater. Sci. 34(5), 371 (2023). https://doi.org/10.1007/s10854-022-09767-5

    Article  CAS  Google Scholar 

  10. B. Wang, J. Yao, P. Zhao, J. Wang, A. Chang, A comparative study of different oxidation states of raw materials on the properties of a novel medium-entropy Co2.77Mn1.71Fe1.10Zn0.42O8 thermistor materials. Mater. Chem. Phys. 284, 126018 (2022). https://doi.org/10.1016/j.matchemphys.2022.126018

    Article  CAS  Google Scholar 

  11. E.D. Macklen, NTC thermistor materials. Concise Encycl. Adv. Ceram. Mater. (1991). https://doi.org/10.1016/b978-0-08-034720-2.50091-5

    Article  Google Scholar 

  12. Y. Zhao, P. Zhao, Q. Zhao, D. He, W. Kong, B. Wu, A. Chang, Preparation and sealing effects of Mg–Al–Si–Ba–O-based glass-ceramic coatings on NTC thermistors. Ceram. Int. 48(16), 23104–23110 (2022). https://doi.org/10.1016/j.ceramint.2022.04.290

    Article  CAS  Google Scholar 

  13. M.E. Tschudin, S.R. Schroeder, Time constant estimates for Radiosonde temperature sensors. J. Atmos. Oceanic Technol. 30(1), 40–56 (2013). https://doi.org/10.1175/jtech-d-11-00181.1

    Article  Google Scholar 

  14. S. Hoshino, T. Sugidachi, K. Shimizu, E. Kobayashi, M. Fujiwara, M. Iwabuchi, Comparison of GRUAN data products for Meisei iMS-100 and Vaisala RS92 radiosondes at Tateno, Japan. Atmos. Meas. Tech. 15(20), 5917–5948 (2022). https://doi.org/10.5194/amt-15-5917-2022

    Article  Google Scholar 

  15. D.F. Hurst, E.G. Hall, A.F. Jordan, L.M. Miloshevich, D.N. Whiteman, T. Leblanc et al., Comparisons of temperature, pressure and humidity measurements by balloon-borne radiosondes and frost point hygrometers during MOHAVE 2009. Atmos. Meas. Tech. 4(12), 2777–2793 (2011). https://doi.org/10.5194/amt-4-2777-2011

    Article  Google Scholar 

  16. J.P. Zachariah, S. Satyanarayana, J. Girija, U.S. Divya, An advanced radiosonde system for aerospace applications. J. Atmos. Oceanic Technol. 31(10), 2067–2077 (2014). https://doi.org/10.1175/jtech-d-13-00050.1

    Article  Google Scholar 

  17. M. de Podesta, S. Bell, R. Underwood, Air temperature sensors: dependence of radiative errors on sensor diameter in precision metrology and meteorology. Metrologia 55(2), 229–244 (2018). https://doi.org/10.1088/1681-7575/aaaa52

    Article  CAS  Google Scholar 

  18. X. **, A. Chang, H. Zhang, D. Zhang, A comparison study of sinterability and electrical properties for microwave and conventional sintered Mn0.43Ni0.9CuFe0.67O4 ceramics. J. Mater. Sci. Technol. 26(4), 344–350 (2010). https://doi.org/10.1016/S1005-0302(10)60056-4

    Article  CAS  Google Scholar 

  19. J.K. Luers, R.E. Eskridge, Reflectivity of silver- and aluminium-based alloys for solar reflectors. J. Appl. Meteorol. Climatol. 27(6), 449–455 (1994). https://doi.org/10.2172/548868

    Article  Google Scholar 

  20. Y. Xu, K. Huo, J. Jiang, L. Chen, F. Zhan, Z. Yu, P.K. Chu, Optical properties of plastic scintillators coated with copper, aluminum and silver by magnetron sputtering. Thin Solid Films. 517(15), 4443–4447 (2009). https://doi.org/10.1016/j.tsf.2009.01.011

    Article  CAS  Google Scholar 

  21. Y. Liu, M. Ma, P. Zhao, Q. Zhao, Z. Fu, D. He, A. Chang, B. Zhang, Optimizing the stability and electrical transport properties of CeNbO4+δ-based oxide ceramics by regulating oxygen ion content. Ceram. Int. 48(22), 33092–33100 (2022). https://doi.org/10.1016/j.ceramint.2022.07.243

    Article  CAS  Google Scholar 

  22. M. Kimura, K. Toshima, Thermistor-like pn junction temperature-sensor with variable sensitivity and its combination with a micro-air-bridge heater. Sens. Actuators A 108(1–3), 239–243 (2003). https://doi.org/10.1016/s0924-4247(03)00290-5

    Article  CAS  Google Scholar 

Download references

Funding

We would like to acknowledge financial support from the Natural Science Foundation of **njiang, China (Grant No. 2022D01A332&2021D01A192) and the West Light Foundation of the Chinese Academy of Sciences (Grant No. 2021-XBQNXZ-003).

Author information

Authors and Affiliations

Authors

Contributions

YL was responsible for preparing materials, testing properties, analyzing data, and completing first draft writing. PH was involved in the experimental process of preparing Mn–Ni–Cu–Fe–O powders. CS was involved in preparing Mn–Ni–Cu–Fe–O microbead thermistor. ZL and YY participated in the performance test of thermistors. JW had embellished the first manuscript. JY and AC had checked and calibrated the manuscript. All authors contributed to the final output of the article.

Corresponding authors

Correspondence to **cheng Yao or Aimin Chang.

Ethics declarations

Competing Interests

The authors declare no conflicts of interest.

Ethics approval

This manuscript is only submitted to the Journal of Materials Science: Materials in Electronics at present; The submitted work is original and haven’t been published elsewhere in any form or language; All experimental data and results are valid.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Wang, J., Huo, P. et al. A novel design of fast response Mn–Ni–Cu–Fe–O microbead thermistors for radiosonde. J Mater Sci: Mater Electron 34, 1737 (2023). https://doi.org/10.1007/s10854-023-11120-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11120-3

Navigation