Log in

Enhanced thermoelectric properties of polypyrrole/metals hydroxides composites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In an attempt to improve the thermoelectric (TE) properties of conducting polymers, polypyrrole/metal hydroxide composites were prepared. Oxidative polymerization technique was used to prepare polypyrrole (PPy), while sol gel method was used to produce the metal hydroxides of Ni(II), Co(II), Sr(II), Si(IV) and Zn (II). Typically, an in-situ approach was used to polymerize pyrrole monomer on the surface of the resultant hydroxides. The structural and surface properties of the prepared composites were analyzed by different techniques. The prepared composites were compacted into pellets to investigate their thermoelectric properties. The presence of metal hydroxides with polypyrrole were found to significantly enhance the power factors and the figure of merits values. At room temperature the first factor increased from 0.07 µW/m K2 for the neat PPy to approximately 0.32 µW/m K2 for the polypyrrole/metal hydroxide composites mainly of Co, while the second one increased from 0.05 × 10−3 to 0.36 × 10−3. The TE properties of polypyrrole/metal hydroxide composites of Ni and Si were also enhanced due to the significant reduction in their thermal conductivity. The findings from this study may potentially serve as a valuable resource for the advancement of future thermoelectric materials and devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. J. Recatala-Gomez, A. Suwardi, I. Nandhakumar, A. Abutaha, K. Hippalgaonkar, Toward accelerated thermoelectric materials and process discovery. ACS Appl. Energy Mater. 3, 2240–2257 (2020)

    Article  CAS  Google Scholar 

  2. H. Mamur, M.R.A. Bhuiyan, F. Korkmaz, M. Nil, A review on bismuth telluride (Bi2Te3) nanostructure for thermoelectric applications. Renew. Sustain. Energy Rev. 82, 4159–4169 (2018)

    Article  CAS  Google Scholar 

  3. H. Ju, J. Kim, Chemically exfoliated SnSe nanosheets and their SnSe/poly (3, 4-ethylenedioxythiophene): poly (styrenesulfonate) composite films for polymer based thermoelectric applications. ACS Nano. 10, 5730–5739 (2016)

    Article  CAS  Google Scholar 

  4. Y. Xue, S. Chen, J. Yu, B.R. Bunes, Z. Xue, J. Xu, L. Zang, Nanostructured conducting polymers and their composites: synthesis methodologies, morphologies and applications. J. Mater. Chem. C 8, 10136–10159 (2020)

    Article  CAS  Google Scholar 

  5. A.M. Glaudell, J.E. Cochran, S.N. Patel, M.L. Chabinyc, Impact of the do** method on conductivity and thermopower in semiconducting polythiophenes. Adv. Energy Mater. 5, 1401072 (2015)

    Article  Google Scholar 

  6. A.A. Alanezi, M.R. Safaei, M. Goodarzi, Y. Elhenawy, The effect of inclination angle and Reynolds Number on the performance of a direct contact membrane distillation (DCMD) process. Energies 13, 2824 (2020)

    Article  CAS  Google Scholar 

  7. L. Guadagno, B. De Vivo, A. Di Bartolomeo, P. Lamberti, A. Sorrentino, V. Tucci, L. Vertuccio, V. Vittoria, Effect of functionalization on the thermo-mechanical and electrical behavior of multi-wall carbon nanotube/epoxy composites. Carbon. 49, 1919–1930 (2011)

    Article  CAS  Google Scholar 

  8. F. Roussel, R.C.Y. King, M. Kuriakose, M. Depriester, A. Hadj-Sahraoui, C. Gors, A. Addad, J.F. Brun, Electrical and thermal transport properties of polyaniline/silver composites and their use as thermoelectric materials. Synth. Met. 199, 196–204 (2015)

    Article  CAS  Google Scholar 

  9. J. Wu, Y. Sun, W. Xu, Q. Zhang, Investigating thermoelectric properties of doped polyaniline nanowires. Synth. Met. 189, 177–182 (2014)

    Article  CAS  Google Scholar 

  10. J. Wu, Y. Sun, W.B. Pei, L. Huang, W. Xu, Q. Zhang, Polypyrrole nanotube film for flexible thermoelectric application. Synth. Met. 196, 173–177 (2014)

    Article  CAS  Google Scholar 

  11. L. Wang, F. Liu, C. **, T. Zhang, Q. Yin, Preparation of polypyrrole/graphene nanosheets composites with enhanced thermoelectric properties. RSC Adv. 4, 46187–46193 (2014)

    Article  CAS  Google Scholar 

  12. L. Wang, X. Jia, D. Wang, G. Zhu, J. Li, Preparation and thermoelectric properties of polythiophene/multiwalled carbon nanotube composites. Synth. Met. 181, 79–85 (2013)

    Article  CAS  Google Scholar 

  13. K. Hiraishi, A. Masuhara, H. Nakanishi, H. Oikawa, Y. Shinohara, Evaluation of thermoelectric properties of polythiophene films synthesized by electrolytic polymerization. Jpn. J. Appl. Phys. 48, 071501 (2009)

    Article  Google Scholar 

  14. M. Mitra, A. Ghosh, A. Mondal, K. Kargupta, S. Ganguly, D. Banerjee, Facile synthesis of aluminium doped zinc oxide-polyaniline hybrids for photoluminescence and enhanced visible light assisted photo-degradation of organic contaminants. Appl. Surf. Sci. 402, 418–428 (2017)

    Article  CAS  Google Scholar 

  15. C. Bora, A. Kalita, D. Das, S.K. Dolui, P.K. Mukhopadhyay, Preparation of polyaniline/nickel oxide nanocomposites by liquid/liquid interfacial polymerization and evaluation of their electrical, electrochemical and magnetic properties. Polym. Int. 63, 445–452 (2014)

    Article  CAS  Google Scholar 

  16. Y. Lu, Y. Song, F. Wang, Thermoelectric properties of graphene nanosheets-modified polyaniline hybrid nanocomposites by an in situ chemical polymerization. Mater. Chem. Phys. 138, 238–244 (2013)

    Article  CAS  Google Scholar 

  17. J.Y. Kim, J.H. Lee, S.J. Kwon, The manufacture and properties of polyaniline nano-films prepared through vapor-phase polymerization. Synth. Met. 157, 336–342 (2007)

    Article  CAS  Google Scholar 

  18. N. Baghdadi, M. Sh Zoromba, M.H. Abdel-Aziz, A.F. Al-Hossainy, M. Bassyouni, N. Salah, One-dimensional nanocomposites based on polypyrrole-carbon nanotubes and their thermoelectric performance. Polymers 13, 278 (2021)

    Article  CAS  Google Scholar 

  19. M. Sh. Zoromba, M.H. Abdel-Aziz, M. Bassyouni, A.M. Abusorrah, A. Attar, N. Baghdadi, N. Salah, Polypyrrole sheets composed of nanoparticles as a promising room temperature thermo-electric material. Phys. E: Low-dimens. Syst. Nanostruct. 134, 114889 (2021)

    Article  Google Scholar 

  20. M. Almasoudi, M. Sh Zoromba, M.H. Abdel-Aziz, M. Bassyouni, A. Alshahrie, A.M. Abusorrah, N. Salah, Optimization preparation of one-dimensional polypyrrole nanotubes for enhanced thermoelectric performance. Polymer. 228, 123950 (2021)

    Article  CAS  Google Scholar 

  21. F. Yakuphanoglu, B.F. Şenkal, Electronic and thermoelectric properties of polyaniline organic semiconductor and electrical characterization of Al/PANI MIS diode. J. Phys. Chem. C 111, 1840–1846 (2007)

    Article  CAS  Google Scholar 

  22. K.R. Anilkumar, A. Parveen, G.R. Badiger, Ambika Prasad, thermoelectric power factor for polyaniline/molybdenum trioxide composites. Ferroelectrics. 386, 88–93 (2009)

    Article  CAS  Google Scholar 

  23. L. Su, Y.X. Gan, Experimental study on synthesizing TiO2 nanotube/polyaniline (PANI) nanocomposites and their thermoelectric and photosensitive property characterization. Compos. Part B 43, 170–182 (2012)

    Article  CAS  Google Scholar 

  24. S. Kamanashis, A. Debnath, K. Deb, A. Bera, B. Saha, Effect of NiO incorporation in charge transport of polyaniline: improved polymer based thermoelectric generator. Energy. 177, 203–210 (2019)

    Article  Google Scholar 

  25. C. Xu, A.R. Puente-Santiago, D. Rodriguez-Padron, A. Caballero, A.M. Balu, A.A. Romero, M.J. Munoz-Batista, R. Luque, Controllable design of polypyrrole-iron oxide nanocoral architectures for supercapacitors with ultrahigh cycling stability. ACS Appl. Energy Mater. 2, 2161–2168 (2019)

    Article  CAS  Google Scholar 

  26. C. Zhou, Y. Zhang, Y. Li, J. Liu, Construction of high-capacitance 3D CoO@ polypyrrole nanowire array electrode for aqueous asymmetric supercapacitor. Nano Lett. 13, 2078–2085 (2013)

    Article  CAS  Google Scholar 

  27. Y. Li, G. Wang, M. Akbari-Saatlu, M. Procek, H.H. Radamson, Si and SiGe nanowire for micro-thermoelectric generator: a review of the current state of the art. Front. Mater. 8, 611078 (2021)

    Article  Google Scholar 

  28. B. Chethan, H.R. Prakash, Y.T. Ravikiran, S.C. Vijayakumari, S. Thomas, Polypyyrole based core-shell structured composite based humidity Sensor operable at room temperature. Sens. Actuators B 296, 126639 (2019)

    Article  CAS  Google Scholar 

  29. G.J. Snyder, A.H. Snyder, Figure of merit ZT of a thermoelectric device defined from materials properties. Energy Environ Sci 10, 2280–2283 (2017)

    Article  Google Scholar 

  30. C. Nath, A. Kumar, Y.K. Kuo, G.S. Okram, High thermoelectric figure of merit in nanocrystalline polyaniline at low temperatures. Appl. Phys. Lett. 105, 133108 (2014)

    Article  Google Scholar 

  31. M.J. Chatterjee, D. Banerjee, K. Chatterjee, Composite of single walled carbon nanotube and sulfosalicylic acid doped polyaniline: a thermoelectric material. Mater. Res. Express. 3, 085009 (2016)

    Article  Google Scholar 

  32. M. Sh. Zoromba, A.A. Alshehri, A.F. Al-Hossainy, M.H. Abdel-Aziz, Doped-poly (anthranilic acid-co-o-phenylene diamine) thin film for optoelectronic applications. Opt. Mater. 111, 110621 (2021)

    Article  Google Scholar 

  33. T. Laetsch, R. Downs, Software for identification and refinement of cell parameters from powder diffraction data of minerals using the RRUFF Project and American Mineralogist Crystal Structure Databases, in 19th General Meeting of the International Mineralogical Association, Kobe, Japan 23 (2006), p. 28

  34. A. Bourezgui, A.F. Al-Hossainy, I.H. El Azab, F. Alresheedi, S.A. Mahmoud, M. Bassyouni, M.H. Abdel-Aziz, Sh Zoromba, combined experimental and TDDFT computations for the structural and optical properties for poly (ortho phenylene diamine) thin film with different surfactants. J. Mater. Sci.: Mater. Electron. 32, 5489–5503 (2021)

    CAS  Google Scholar 

  35. F.T.L. Muniz, M.A.R. Miranda, C.M. dos Santos, J.M. Sasaki, The Scherrer equation and the dynamical theory of X-ray diffraction. Acta Crystallogr. A Found. Adv. 72, 385–390 (2016)

    Article  CAS  Google Scholar 

  36. K. Boukerma, M. Omastová, P. Fedorko, M.M. Chehimi, Surface properties and conductivity of bis (2-ethylhexyl) sulfosuccinate-containing polypyrrole. Appl. Surf. Sci. 249, 303–314 (2005)

    Article  CAS  Google Scholar 

  37. Y. Kinemuchi, C. Ito, H. Kaga, T. Aoki, K. Watari, Thermoelectricity of Al-doped ZnO at different carrier concentrations. J. Mater. Res. 22, 1942–1946 (2007)

    Article  CAS  Google Scholar 

  38. G. Zuo, Z. Li, E. Wang, M. Kemerink, High Seebeck coefficient and power factor in n-type organic thermoelectrics. Adv. Electron. Mater. 4, 1700501 (2018)

    Article  Google Scholar 

  39. N. Salah, W.M. Al-Shawafi, A. Alshahrie, N. Baghdadi, Y.M. Soliman, A. Memic, Size controlled, antimicrobial ZnO nanostructures produced by the microwave assisted route. Mater. Sci. Eng. C 99, 1164–1173 (2019)

    Article  CAS  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

AA, AA, NB, MHA-A, NS, MSZ: Methodology, Investigation, Formal analysis, Writing—Review & Editing.

Corresponding author

Correspondence to Mohamed Helmy Abdel-Aziz.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Almaghraby, A., Attar, A., Baghdadi, N. et al. Enhanced thermoelectric properties of polypyrrole/metals hydroxides composites. J Mater Sci: Mater Electron 34, 1670 (2023). https://doi.org/10.1007/s10854-023-11069-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11069-3

Navigation