Log in

Modification of epoxy resin matrix by high-performance mesoporous silica@graphene nanocomposites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

High-performance composites were made with sheet graphene (GNP) and spherical silica (SiO2) as mesoporous nanofillers. The nanofillers are composed of SiO2 tightly wrapped on GNP by the sol–gel method, resulting in SiO2@GNP (SG) composites. The SG composites are then combined with epoxy resin (EP) to form polymer matrices. After conducting a series of characterization and assessments, including SEM, XRD, FTIR, and BET, the results show that the use of SG composites as hollow mesoporous nanofillers have a higher potential to create a significant quantity of thermally conductive pathways in the polymer matrix. Meanwhile, SiO2@GNP/EP (SGE) composites have low dielectric constants and dielectric losses, along with high thermal conductivities. The optimal dielectric constant of SGE composites is 2.65 at 10 Hz, achieved at a 5 wt% SG composites loading, and the dielectric losses stay below 0.02 (10–106 Hz). Furthermore, the thermal conductivity reaches 0.72 w/(m K). Compared to neat EP, the SGE composites reduce the dielectric constant by 13.7% (10 Hz) and increase thermal conductivity by 140%. The robust electrical insulation and thermal conductivity of the aforementioned features lend themselves well to a range of applications. The SGE composites show good promise in several industries, with excellent potential in the realm of 5G communications particularly, such as epoxy plastic sealing materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article [and its supplementary information files].

References

  1. Y. Yao, J. Sun, X. Zeng, R. Sun, J.-B. Xu, C.-P. Wong, Small. 14, 1704044 (2018). https://doi.org/10.1002/smll.201704044

    Article  CAS  Google Scholar 

  2. P. Zhang, X. Ding, Y. Wang, M. Shu, Y. Gong, K. Zheng, X. Tian, X. Zhang, ACS Appl. Polym. Mater. 1, 2006 (2019). https://doi.org/10.1021/acsapm.9b00258

    Article  CAS  Google Scholar 

  3. C. Dai, X. Chen, T. Jiang, A. Paramane, Y. Tanaka, Polym. Test. 86, 106502 (2020). https://doi.org/10.1016/j.polymertesting.2020.106502

    Article  CAS  Google Scholar 

  4. H. Shin, B. Kim, J.-G. Han, M.Y. Lee, J.K. Park, M. Cho, Compos. Sci. Technol. 145, 173 (2017). https://doi.org/10.1016/j.compscitech.2017.03.028

    Article  CAS  Google Scholar 

  5. H.K. Nguyen, A. Shundo, X. Liang, S. Yamamoto, K. Tanaka, K. Nakajima, ACS Appl. Mater. Interfaces. 14, 42713 (2022). https://doi.org/10.1021/acsami.2c12335

    Article  CAS  Google Scholar 

  6. M.M. Adnan, E.G. Tveten, J. Glaum, M.-H.G. Ese, S. Hvidsten, W. Glomm, M.-A. Einarsrud, Adv. Electron. Mater. 5, 1800505 (2018). https://doi.org/10.1002/aelm.201800505

    Article  CAS  Google Scholar 

  7. X. Zeng, J. Sun, Y. Yao, R. Sun, J.-B. Xu, C.-P. Wong, ACS Nano. 11, 5167 (2017). https://doi.org/10.1021/acsnano.7b02359

    Article  CAS  Google Scholar 

  8. J.K. Nelson, Dielectric Polymer Nanocomposites (Springer, Boston, 2010)

    Book  Google Scholar 

  9. W.-H. Weng, H. Chen, S.-P. Tsai, J.-C. Wu, J. Appl. Polym. Sci. 91, 532 (2003). https://doi.org/10.1002/app.13217

    Article  CAS  Google Scholar 

  10. W. Li, W. Feng, H. Huang, J. Mater. Sci.: Mater. Electron. 27, 6364 (2016). https://doi.org/10.1007/s10854-016-4571-9

    Article  CAS  Google Scholar 

  11. H. Zhang, H. Zhou, J. Ge, G. Liu, X. Tu, L. **, J. Mater. Sci.: Mater. Electron. 33, 21985 (2022). https://doi.org/10.1007/s10854-022-08987-z

    Article  CAS  Google Scholar 

  12. W. **ao, Y. Liu, S. Guo, RSC Adv. 6, 86904 (2016). https://doi.org/10.1039/C6RA16335A

    Article  CAS  Google Scholar 

  13. Y. **e, W. Liu, L. Liang, C. Liu, M. Yang, H. Shi, S. Wang, F. Zhang, J. Appl. Polym. Sci. 137, 49405 (2020). https://doi.org/10.1002/app.49405

    Article  CAS  Google Scholar 

  14. S.-D. Jiang, G. Tang, J. Chen, Z.-Q. Huang, Y. Hu, J. Hazard. Mater. 342, 689 (2018). https://doi.org/10.1016/j.jhazmat.2017.09.001

    Article  CAS  Google Scholar 

  15. P. Dittanet, R.A. Pearson, P. Kongkachuichay, Int. J. Adhes. Adhes. 78, 74 (2017). https://doi.org/10.1016/j.ijadhadh.2017.06.006

    Article  CAS  Google Scholar 

  16. R.K. Biswas, P. Khan, S. Mukherjee, A.K. Mukhopadhyay, J. Ghosh, K. Muraleedharan, J. Non-cryst. Solids. 488, 1 (2018). https://doi.org/10.1016/j.jnoncrysol.2018.02.037

    Article  CAS  Google Scholar 

  17. E. Kuzielová, M. Slaný, M. Žemlička, J. Másilko, M.T. Palou, Materials. 14, 2786 (2021). https://doi.org/10.3390/ma14112786

    Article  CAS  Google Scholar 

  18. A. Allahverdi, S. Pilehvar, M. Mahinroosta, Powder Technol. 288, 132 (2016). https://doi.org/10.1016/j.powtec.2015.10.053

    Article  CAS  Google Scholar 

  19. M. Adeli, Y. Yamini, M. Faraji, Arab. J. Chem. (2017). https://doi.org/10.1016/j.arabjc.2012.10.012

    Article  Google Scholar 

  20. F. Kolář, V. Machovič, SvítilováJ., and, L. Borecká, Mater. Chem. Phys. 86, 88 (2004). https://doi.org/10.1016/j.matchemphys.2004.02.011

    Article  CAS  Google Scholar 

  21. D. Mishra, R. Arora, S. Lahiri, S.S. Amritphale, N. Chandra, Prot. Met. Phys. Chem. Surf. 50, 628 (2014). https://doi.org/10.1134/S2070205114050128

    Article  CAS  Google Scholar 

  22. L. Chen, X. Li, E.E.L. Tanner, R.G. Compton, Chem. Sci. 8, 4771 (2017). https://doi.org/10.1039/C7SC01331K

    Article  CAS  Google Scholar 

  23. P. Jain, O. Vincent, A.D. Stroock, Langmuir. 35, 3949 (2019). https://doi.org/10.1021/acs.langmuir.8b04307

    Article  CAS  Google Scholar 

  24. C. Vakifahmetoglu, V. Presser, S.-H. Yeon, P. Colombo, Y. Gogotsi, Microporous Mesoporous Mater. 144, 105 (2011). https://doi.org/10.1016/j.micromeso.2011.03.042

    Article  CAS  Google Scholar 

Download references

Funding

The work was supported by the Shanghai Municipal Science and Technology Commission Project (22DZ2291100).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by CY, DY and MX. The first draft of the manuscript was written by CY and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Dandan Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, C., Yang, D. & **e, M. Modification of epoxy resin matrix by high-performance mesoporous silica@graphene nanocomposites. J Mater Sci: Mater Electron 34, 1601 (2023). https://doi.org/10.1007/s10854-023-11008-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11008-2

Navigation