Log in

Ionic modification effects on crystal structure and microwave dielectric properties of MgTiTa2O8 ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, two ionic modification strategies on trirutile MgTiTa2O8 ceramics, including Mg site non-stoichiometry (Mg1+xTiTa2O8) and (Al1/2Nb1/2)4+ ionic do** (MgTi1−y(Al1/2Nb1/2)yTa2O8), were adopted to improve the microwave dielectric properties. The results show that a small do** content does not change the crystal structure type, indicating that the trirutile MgTiTa2O8 solid solutions can be formed. On the one hand, the increase of sintering decreases the porosities of microstructures, which benefit the dielectric constant and Q×f value; however, excessive sintering temperature leads to abnormal growth of grain, deteriorating the uniformity of grain growth and then increases the dielectric loss. On the other hand, the variations of the dielectric constant are dominated by the ionic polarizability intrinsically, while the Q×f value is positively correlated with the packing fraction value. The two modification strategies both benefit the Q×f value with improvements of about 21% and 30% in Mg1+xTiTa2O8 and MgTi1−y(Al1/2Nb1/2)yTa2O8 ceramics, respectively. In summary, excellent microwave dielectric properties of MgTi1−y(Al1/2Nb1/2)yTa2O8 (y = 0.10) system are obtained when sintered at 1350 °C: εr = 43.58, Q×f = 24,565 GHz, τf = 100.37 ppm/°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. H. Yang, L. Chai, G. Liang, M. **ng, Z. Fang, X. Zhang, T. Qin, E. Li, Structure, far-infrared spectroscopy, microwave dielectric properties, and improved low-temperature sintering characteristics of tri-rutile Mg0.5Ti0.5TaO4 ceramics. J. Adv. Ceram. 12, 296–308 (2023)

    Article  CAS  Google Scholar 

  2. F.-F. Wu, D. Zhou, C. Du, B.-B. **, C. Li, Z.-M. Qi, S. Sun, T. Zhou, Q. Li, X.-Q. Zhang, Design of a Sub-6 GHz dielectric resonator antenna with novel temperature-stabilized (Sm1–xBix)NbO4(x = 0–0.15) microwave dielectric ceramics. ACS Appl. Mater. Interfaces 14, 7030–7038 (2022)

    Article  CAS  Google Scholar 

  3. H. Tian, J. Zheng, L. Liu, H. Wu, H. Kimura, Y. Lu, Z. Yue, Structure characteristics and microwave dielectric properties of Pr2(Zr1 – xTix)3(MoO4)9 solid solution ceramic with a stable temperature coefficient. J. Mater. Sci. Technol. 116, 121–129 (2022)

    Article  CAS  Google Scholar 

  4. M.T. Sebastian, H. Jantunen, Low loss dielectric materials for LTCC applications: a review. Int. Mater. Rev. 53, 57–90 (2008)

    Article  CAS  Google Scholar 

  5. Z. Fang, H. Yang, H. Yang, Z. **ong, X. Zhang, P. Zhao, B. Tang, Ilmenite-type MgTiO3 ceramics by complex (Mn1/2W1/2)4+ cation co-substitution producing improved microwave characteristics. Ceram. Int. 47, 21388–21397 (2021)

    Article  CAS  Google Scholar 

  6. S. Liu, H. Li, R. **ang, P. Zhang, X. Chen, Q. Wen, H. Hu, Effect of Substituting Al3+for Ti4+on the microwave dielectric performance of Mg2Ti1-xAl4/3xO4(001 ≤ x ≤ 009) ceramics. Ceram. Int. 47, 33064–33069 (2021)

    Article  CAS  Google Scholar 

  7. R. **ang, H. Hu, P. Zhang, H. Li, W. Gong, G. Chen, B. Yang, Structure, microwave dielectric properties and bond characteristics of Mg2Ti1-x(Al1/2Ta1/2)xO4 ceramics. Ceram. Int. 49, 12959–12963 (2022)

    Article  Google Scholar 

  8. H. Li, P. Zhang, S. Yu, H. Yang, B. Tang, F. Li, S. Zhang, Structural dependence of microwave dielectric properties of spinel structured Mg2(Ti1-xSnx)O4 solid solutions: crystal structure refinement, Raman spectra study and complex chemical bond theory. Ceram. Int. 45, 11639–11647 (2019)

    Article  CAS  Google Scholar 

  9. S. Wang, Y. Zhang, Structure, bond characteristics and microwave dielectric properties of new A0.75Ti0.75Ta1.5O6 (A = Ni, Co, zn and mg) ceramics based on complex chemical bond theory. J. Eur. Ceram. Soc. 40, 1181–1185 (2020)

    Article  CAS  Google Scholar 

  10. R.C. Pullar, The synthesis, properties, and applications of columbite niobates (M2+Nb2O6): a critical review. J. Am. Ceram. Soc. 92, 563–577 (2009)

    Article  CAS  Google Scholar 

  11. A. Belous, O. Ovchar, B. Jancar, J. Bezjak, The effect of non-stoichiometry on the microstructure and microwave dielectric properties of the columbites A2+Nb2O6. J. Eur. Ceram. Soc. 27, 2933–2936 (2007)

    Article  CAS  Google Scholar 

  12. Z. Fang, B. Tang, F. Si, E. Li, H. Yang, S. Zhang, Phase evolution, structure and microwave dielectric properties of Li2 + xMg3SnO6 (x = 0.00–0.12) ceramics. Ceram. Int. 43, 13645–13652 (2017)

    Article  CAS  Google Scholar 

  13. W. Luo, L. Li, S. Yu, J. Li, B. Zhang, J. Qiao, S. Chen, Bond theory, terahertz spectra and dielectric studies in donor-acceptor (Nb-Al) substituted ZnTiNb2O8 system. J. Am. Ceram. Soc. 102, 4612–4620 (2019)

    Article  CAS  Google Scholar 

  14. X. Shi, H. Zhang, D. Zhang, F. Xu, C. Liu, L. Shi, Y. Zheng, Structure and microwave dielectric properties of Li2Mg3Ti1-x(Al1/2Nb1/2)xO6 ceramics. Ceram. Int. 46, 13737–13742 (2020)

    Article  CAS  Google Scholar 

  15. E. Li, X. Yang, H. Yang, H. Yang, H. Sun, Y. Yuan, S. Zhang, Crystal structure, microwave dielectric properties and low temperature sintering of (Al0.5Nb0.5)4+ co-substitution for Ti4+ of LiNb0.6Ti0.5O3 ceramics. Ceram. Int. 45, 5418–5424 (2019)

    Article  CAS  Google Scholar 

  16. B. Toby, EXPGUI, a graphical user interface for GSAS. J. Appl. Crystallogr. 34, 210–213 (2001)

    Article  CAS  Google Scholar 

  17. A.C. Larson, R.B. Von, Dreele, general structure analysis system (GSAS), Los Alamos National Laboratory Report LAUR pp. 86–748, (2004)

  18. R. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A 32, 751–767 (1976)

    Article  Google Scholar 

  19. G. Halle, H. Müller-Buschbaum, Untersuchungen an Zn1 – xMxTa2O6 (M ≡ Mg und Ni) mit einer verfeinerung der kristallstruktur von MgTa2O6. J. Less Common Met. 142, 263–268 (1988)

    Article  CAS  Google Scholar 

  20. H. Yang, S. Zhang, Y. Chen, H. Yang, Y. Yuan, E. Li, Crystal chemistry, Raman spectra, and bond characteristics of trirutile-type Co0.5Ti0.5TaO4 microwave dielectric ceramics. Inorg. Chem. 58, 968–976 (2019)

    Article  CAS  Google Scholar 

  21. J. Bao, Y. Zhang, H. Kimura, H. Wu, Z. Yue, Crystal structure, chemical bond characteristics, infrared reflection spectrum, and microwave dielectric properties of Nd2(Zr1 – xTix)3(MoO4)9 ceramics. J. Adv. Ceram. 12, 82–92 (2023)

    Article  CAS  Google Scholar 

  22. R.D. Shannon, Dielectric polarizabilities of ions in oxides and fluorides. J. Appl. Phys. 73, 348–366 (1993)

    Article  CAS  Google Scholar 

  23. Z.Q. Yuan, B. Liu, X.Q. Liu, X.M. Chen, Structure and microwave dielectric characteristics of Sr(La1 – xSmx)2Al2O7 ceramics. RSC Adv. 6, 96229–96236 (2016)

    Article  CAS  Google Scholar 

  24. E.S. Kim, B.S. Chun, R. Freer, R.J. Cernik, Effects of packing fraction and bond valence on microwave dielectric properties of A2+B6+O4 (A2+: ca, Pb, Ba; B6+: Mo, W) ceramics. J. Eur. Ceram. Soc. 30, 1731–1736 (2010)

    Article  CAS  Google Scholar 

  25. A.J. Bosman, E.E. Havinga, Temperature dependence of dielectric constants of cubic ionic compounds. Phys. Rev. 129, 1593–1600 (1963)

    Article  CAS  Google Scholar 

  26. P.P. Ma, X.Q. Liu, F.Q. Zhang, J.J. **ng, X.M. Chen, Sr(Ga0.5Nb0.5)1–xTixO3 low-loss microwave dielectric ceramics with medium dielectric constant. J. Am. Ceram. Soc. 98, 2534–2540 (2015)

    Article  CAS  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript. The authors have no relevant financial or non-financial interests to disclose.

Author information

Authors and Affiliations

Authors

Contributions

QX contributed to the conceptualization, validation, formal analysis, and writing and preparation of the original draft. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Qinglin Xu.

Ethics declarations

Conflict of interest

All authors have declared that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Q. Ionic modification effects on crystal structure and microwave dielectric properties of MgTiTa2O8 ceramics. J Mater Sci: Mater Electron 34, 1525 (2023). https://doi.org/10.1007/s10854-023-10927-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10927-4

Navigation