Log in

Crystallization temperature dependence of phase evolution and energy storage feature of KSr2Nb5O15 based glass ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Dense niobate glass ceramics with a principal crystalline phase of KSr2Nb5O15 were obtained via melt-quenching and controlled crystallization technique. The research results reveal that with the crystallization temperature increasing from 800 to 950 °C, the dielectric constant and crystal phase content raise simultaneously. The achieved recoverable energy density (Wrec) displays a continuous increase from 0.61 to 1.23 J/cm3 (@500 kV/cm) with the increment of crystallization temperature from 800 to 950 °C. The glass ceramic obtained at 850 °C exhibits the supreme discharge energy density of 1.82 J/cm3 (@ 700 kV/cm), power density of 192.8 MW/cm3 and energy efficiency of 82%. These findings show that the acquired glass ceramics have potential applications in energy storage fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Our datasets of the paper are available from the corresponding author on reasonable request.

References

  1. P. Jiang, J. Yuan, H. Liu, L. Wang, H. Li, W. **e, Q. Zhang, IEEE Trans. Plasma Sci. 45, 698 (2017)

    CAS  Google Scholar 

  2. X. Du, Y. Pu, X. Peng, R. Li, Q. Zhang, M. Chen, G. Liu, Ceram. Int. 46, 11492 (2020)

    CAS  Google Scholar 

  3. S. **ao, S. **u, K. Yang, B. Shen, J. Zhai, J. Electr. Mater. 47, 834 (2018)

    CAS  Google Scholar 

  4. T. Liu, G. Chen, J. Song, C. Yuan, Trans. Nonferrous Met. Soc. China 24, 729 (2014)

    CAS  Google Scholar 

  5. S. **e, C. Liu, H. Bai, T. Fu, B. Shen, J. Zhai, J. Alloys Compd. 910, 164923 (2022)

    CAS  Google Scholar 

  6. J. Song, G. Chen, J. Mater. Sci. Mater. Electron. 25, 349 (2014)

    CAS  Google Scholar 

  7. F. Luo, Y. Qin, F. Shang, G. Chen, Ceram. Int. 48, 30661 (2022)

    CAS  Google Scholar 

  8. X. Peng, Y. Pu, X. Du, J. Ji, P. Gao, L. Zhang, Z. Sun, Chem. Eng. J. 422, 130027 (2021)

    CAS  Google Scholar 

  9. H. Wang, J. Liu, J. Zhai, B. Shen, J. Am. Ceram. Soc. 99, 2909 (2016)

    CAS  Google Scholar 

  10. P.V. Divya, G. Vignesh, V. Kumar, J. Phys. D: Appl. Phys. 40, 7804 (2007)

    CAS  Google Scholar 

  11. C. Liu, S. **e, H. Bai, F. Yan, T. Fu, B. Shen, J. Zhai, J. Materiomics 8, 763 (2022)

    CAS  Google Scholar 

  12. Y. Yang, J. Song, G. Chen, C. Yuan, X. Li, C. Zhou, J. Non-Cryst Solids 410, 96 (2015)

    CAS  Google Scholar 

  13. D. Feng, H. Du, H. Ran, T. Lu, S. **a, L. Xu, Z. Wang, C. Ma, J. Solid State Chem. 310, 123081 (2022)

    CAS  Google Scholar 

  14. D.F. Han, Q.M. Zhang, J. Luo, Q. Tang, J. Du, Solid State Sci. 14, 661 (2012)

    CAS  Google Scholar 

  15. Q. Zhang, J. Luo, Q. Tang, D. Han, Y. Zhou, J. Du, J. Nanosci. Nanotechnol. 12, 8832 (2012)

    CAS  Google Scholar 

  16. Y. Zhou, Q. Zhang, J. Luo, Q. Tang, J. Du, Scripta Mater. 65, 296 (2011)

    CAS  Google Scholar 

  17. S. **e, C. Liu, H. Bai, K. Chen, B. Shen, J. Zhai, J. Mater. Sci. 56, 16278 (2021)

    CAS  Google Scholar 

  18. Z. Yao, Z. Song, H. Hao, Z. Yu, M. Cao, S. Zhang, M.T. Lanagan, H. Liu, Adv. Mater. 29, 1601727 (2017)

    Google Scholar 

  19. T. Kimura, S. Miyamoto, T. Yamaguchi, J. Am. Ceram. Soc. 73, 127 (1990)

    CAS  Google Scholar 

  20. L. Liu, Z. Hou, X. Quan, Mater. Sci.Eng.: B 211, 1 (2016)

    CAS  Google Scholar 

  21. D. Jiang, F. Shang, G. Chen, Ceram. Int. 47, 27142 (2021)

    CAS  Google Scholar 

  22. D. Jiang, Y. Zhong, F. Shang, G. Chen, J. Mater. Sci: Mater. Electron. 31, 12074 (2020)

    CAS  Google Scholar 

  23. L. Liu, F. Gao, G. Hu, J. Liu, J. Li, J. Alloys Compd. 580, 93 (2013)

    CAS  Google Scholar 

  24. G. Chen, T. Liu, C. Yuan, Y. Yang, C. Zhou, J. Non-Cryst Solids 378, 241 (2013)

    CAS  Google Scholar 

  25. S. Wang, J. Tian, T. Jiang, J. Zhai, B. Shen, Ceram. Int. 44, 23109 (2018)

    CAS  Google Scholar 

  26. H. Wang, J. Liu, J. Zhai, Z. Pan, B. Shen, J. Eur. Ceram. Soc. 37, 3917 (2017)

    CAS  Google Scholar 

  27. K. Chen, T. Jiang, B. Shen, J. Zhai, Mater. Sci. Eng.: B 263, 114885 (2021)

    CAS  Google Scholar 

  28. S. Xue, S. **ao, J. Zhai, J. Mater. Sci. Mater. Electron. 29, 730 (2018)

    CAS  Google Scholar 

  29. L. Liu, Y. Wang, Z. Hou, R. Lv, Mater. Sci. Eng.: B269, 115174 (2021)

    CAS  Google Scholar 

  30. S. Cao, J. Xu, L. **, J. Zhao, Z. Ma, Q. Chen, J. Liu, F. Gao, J. Materiomics 7, 976 (2021)

    Google Scholar 

  31. Y. Zeng, X. Qin, S. Jiang, G. Zhang, L. Zhang, J. Am. Ceram. Soc. 94, 469 (2011)

    CAS  Google Scholar 

  32. P. Prapitpongwanich, R. Harizanova, K. Pengpat, C. Rüssel, Mater. Lett. 63, 1027 (2009)

    CAS  Google Scholar 

  33. B.H. Venkataraman, T. Fujiwara, K.B.R. Varma, T. Komatsu, Mater. Chem. Phys. 117, 244 (2009)

    CAS  Google Scholar 

  34. J. Tian, S. Wang, K. Yang, J. Liu, J. Zhai, B. Shen, Ceram. Int. 44, 15490 (2018)

    CAS  Google Scholar 

  35. S. Xu, Z. Deng, S. Shen, L. Wei, Z. Yang, Ceram. Int. 46, 13997 (2020)

    CAS  Google Scholar 

  36. A.L. Young, G.E. Hilmas, S.C. Zhang, R.W. Schwartz, J. Mater. Sci. 42, 5613 (2007)

    CAS  Google Scholar 

  37. W. Cao, P. Chen, R. Lin, F. Li, B. Ge, D. Song, Z. Cheng, C. Wang, Compos. Part B: Eng. 255, 110630 (2023)

    CAS  Google Scholar 

  38. L. Zhang, Y. Pu, M. Chen, J. Alloys Compd. 775, 342 (2019)

    CAS  Google Scholar 

  39. K. Yang, J. Liu, B. Shen, J. Zhai, S. Wang, J. Tian, Ceram. Int. 44, 6181 (2018)

    CAS  Google Scholar 

  40. X. Du, Y. Pu, X. Li, X. Peng, Z. Sun, J. Zhang, J. Ji, R. Li, Q. Zhang, M. Chen, Ceram. Int. 47, 8987 (2021)

    CAS  Google Scholar 

  41. S. Wang, J. Tian, J. Liu, K. Yang, B. Shen, J. Zhai, J. Mater. Chem. C 6, 12608 (2018)

    CAS  Google Scholar 

  42. K. Chen, H. Bai, F. Yan, X. He, C. Liu, S. **e, B. Shen, J. Zhai, ACS Appl. Mater. Interfaces 13, 4236 (2021)

    CAS  Google Scholar 

Download references

Funding

This research was supported by Guangxi Science & Technology Planning Project (Grant No. AD21220138), National Natural Science Foundation of China (Grant No. 52162001), Project of Guangxi Key Laboratory of Information Materials (Grant No. 211009-Z).

Author information

Authors and Affiliations

Authors

Contributions

XG performed the fabrication of glass ceramics and carried out the performance testing. YW performed the dielectric, ferroelectric testing. FS and GC presented the concept and provided resources, and revised the manuscript.

Corresponding authors

Correspondence to Fei Shang or Guohua Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no confict of interest.

Additional information

Publisher’s Note

Springer nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geng, X., Wang, Y., Shang, F. et al. Crystallization temperature dependence of phase evolution and energy storage feature of KSr2Nb5O15 based glass ceramics. J Mater Sci: Mater Electron 34, 1264 (2023). https://doi.org/10.1007/s10854-023-10686-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10686-2

Navigation