Log in

The role of Mn in Bi2-xMnxTe3 topological insulator: Structural, compositional, magnetic, and weak anti-localization property analysis

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Bi2Te3 is one of the favorite materials in material-science community due to its well-known topological and thermoelectric properties. In this paper, we have explored the influence of magnetic (Mn) do** on structural, compositional, and magneto-electric transport properties of host Bi2Te3. Bi2-xMnxTe3 (where x = 0, 0.05, and 0.25) has been prepared using the programmable heat treatment of vacuum-sealed precursors. XRD profiles along with Rietveld refinement infer that, most of the doped-Mn atoms substitute Bi-sites and few Mn-atoms take interstitial positions in host Bi2Te3. This phenomenon is also supported by the XPS and HR-TEM study. The magnetic analysis establishes that the nature of magnetism changes from diamagnetic to paramagnetic with the increment of Mn-content. However, there exists Griffith phase at low temperatures in the paramagnetic background. Electrical transport indicates the preservation of hostʼs metallic nature for low Mn-do**; however, an anomaly in \({\uprho }_{\mathrm{xx}}\) –T plot at 100 K is noticed for high Mn-do**, which justifies the influence of magnetic dopants in electron transport. Importantly, this magnetic do** has a strong impact on hostʼs quantum-transport, as there exists a gradual transformation of hostʼs weak anti-localization (WAL) effect into quadratic as well as fluctuating nature in the magneto-conductance (MC) study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All the data, which supported the study are included in this manuscript.

References

  1. M.Z. Hasan, C.L. Kane, Colloquium: Topological insulators. Rev. Mod. Phys. 82, 3045 (2010)

    Article  CAS  Google Scholar 

  2. X.L. Qi, S.C. Zhang, Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057 (2011)

    Article  CAS  Google Scholar 

  3. S. Q. Shen, 2012 Topological insulators: Dirac equation in condensed matter, Spring Series in Solid- State Science 174

  4. H. Zhang, C.X. Liu, X.L. Qi, X. Dai, Z. Fang, S.C. Zhang, Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nat. Phys. 5, 438–442 (2009)

    Article  CAS  Google Scholar 

  5. Y.A. Salawu, J.H. Yun, J.S. Rhyee, M. Sasaki, H.J. Kim, Weak antilocalization, spin-orbit interaction, and phase coherence length of a Dirac semimetal Bi0.97Sb0.03. Sci Rep 12(1), 2845 (2022)

    Article  CAS  Google Scholar 

  6. G. Xu, W. Wang, X. Zhang, Y. Du, E. Liu, S. Wang, G. Wu, Z. Liu, X.X. Zhang, Weak antilocalization effect and noncentrosymmetric superconductivily in a topologically nontrivial semimetal LuPdBi. Sci. Rep. 4, 5709 (2014)

    Article  Google Scholar 

  7. L. Bao, L. He, N. Meyer, X. Kou, P. Zhang, Z. Chen, A.V. Fedorov, F. **u et al., Weak anti-localization and quantum oscillations of surface states in topological insulator Bi2Se2Te. Sci. Rep. 2, 726 (2012)

    Article  Google Scholar 

  8. J. Zhang, C. Zhang, Z. Hou, J. Chen, P. Li, Y. Wen, Q. Zhang, W. Wang, X. Zhang, Weak antilocalization effect and high-pressure transport properties of ScPdBi single crystal. Appl. Phys. Lett. 115, 172407 (2019)

    Article  Google Scholar 

  9. C. Shekhar, E. Kampert, T. Forster, B. Yan, A. K. Nayak, M. Nicklas, and C. Felser, Large linear magnetoresistance and weak anti-localization in Y(Lu)PtBi topological insulators, ar**v:1502.00604v2 (2015).

  10. J.M. Zhang, W. Ming, Z. Huang, X. Kou, Y. Fan, K.L. Wang, Y. Yao, Stability, electronic, and magnetic properties of magnetically doped topological insulators Bi2Se3, Bi2Te3 and Sb2Te3. Phys. Rev. B 88, 235131 (2013)

    Article  Google Scholar 

  11. H. **, J. Im, A.J. Freeman, Topological and magnetic phase transition in Bi2Se3 thin films with magnetic impurities. Phys. Rev. B 84, 134408 (2011)

    Article  Google Scholar 

  12. S. Caprara, V.V. Tugushev, P.M. Echenique, E.V. Chulkov, Spin-polarized states of matter on the surface of a three-dimensional topological insulator with implanted magnetic atom. Phys. Rev. B 85, 121304 (2012)

    Article  Google Scholar 

  13. Y. Baum, A. Stern, Magnetic instability on the surface of topological insulators. Phys. Rev. B 85, 121105 (2012)

    Article  Google Scholar 

  14. G. Rosenberg, M. Franz, Surface magnetic ordering in topological insulators with bulk magnetic dopants. Phys. Rev. B 85, 195119 (2012)

    Article  Google Scholar 

  15. K. Carva, J. Kudrnovsky, F. Maca, V. Drchal, I. Turek, P. Balaz, V. Tkac, V. Holy, V. Sechovsky, J. Honolka, Electronic and transport properties of the Mn-doped topological insulator Bi2Te3: a first-principles study. Phys. Rev. B 93, 214409 (2016)

    Article  Google Scholar 

  16. L.B. Abdulla, L. Seixas, T.M. Schmidt, R.H. Miwa, A. Fazzio, Topological insulator Bi2Se3(111) surface doped with transition metals: An ab initio investigation. Phys. Rev. B 88, 045312 (2013)

    Article  Google Scholar 

  17. K. Nomura, N. Nagaosa, Surface- Quantized Anomalous Hall Current and the Magnetoelectric Effect in Magnetically Disordered Topological Insulators. Phys. Rev. Lett. 106, 166802 (2011)

    Article  Google Scholar 

  18. W.K. Tse, A.H. Macdonald, Giant magneto-optical Kerr effect and universal Faraday effect in thin-film topological insulators. Phys. Rev. Lett. 105, 057401 (2010)

    Article  Google Scholar 

  19. R. Yu, W. Zhang, H.J. Zhang, S.C. Zhang, X. Dai, Z. Fang, Quantized anomalous hall effect in magnetic topological insulators. Science 329(5987), 61–64 (2010)

    Article  CAS  Google Scholar 

  20. X.L. Qi, R. Li, J. Zang, S.C. Zhang, Inducing a Magnetic Monopole with Topological Surface States. Science 323(5918), 1184–1187 (2009)

    Article  CAS  Google Scholar 

  21. L. Fu, C.L. Kane, Probing neutral Majorana fermion edge modes with charge transport. Phys. Rev. Lett. 102, 216403 (2009)

    Article  Google Scholar 

  22. M. Liu, J. Zhang, C.Z. Chang, Y. Wang et al., Crossover between weak antilocalization and weak localization in a magnetically doped topological insulator. Phys. Rev. Lett. 108, 036805 (2012)

    Article  Google Scholar 

  23. H. Afzal, S. Bera, A.K. Mishra, M. Krishnan, M.M. Patidar, R. Venkatesh, V. Ganesan, Correlation between magnetic ordering and crossover from weak anti-localization (WAL) to weak localization (WL) in cobalt and manganese-doped Bi0.94Sb0.06 topological insulator nanoparticles. J. Supercond. Nov. Magn. 33, 1659–1666 (2020)

    Article  CAS  Google Scholar 

  24. D. Zhang, A. Richardella, D.W. Rench, S.Y. Xu, A. Kandala, T.C. Flanagan, M.Z. Hasan, N. Samarth et al., Interplay between ferromagnetism, surface states, and quantum corrections in a magnetically doped topological insulator. Phys. Rev. B 86, 205127 (2012)

    Article  Google Scholar 

  25. N.S. Kander, S. Guchhait, A.K. Das, Influence of magnetic (Fe) and non-magnetic (In) do** on structural, magnetic, and weak anti-localization properties of Bi2Te3 topological insulator. Phys. Scr. 98, 035802 (2023)

    Article  Google Scholar 

  26. A. Laha, S. Malick, R. Singha, P. Mondal, P. Rambabu, V. Kanchana, Z. Hossain, Magnetotransport properties of the correlated topological nodal-line semimetal YbCdGe. Phys. Rev. B 99, 241102(R) (2019)

    Article  Google Scholar 

  27. A. Roy, S. Guchhait, S. Sonde, R. Dey, T. Pramanik, A. Rai, H.C.P. Movva, L. Colombo, S.K. Banerjee, Two-dimensional weak anti-localization in Bi2Te3 thin film grown on Si (111)-(7×7) surface by molecular beam epitaxy. Appl. Phys. Lett. 102, 163118 (2013)

    Article  Google Scholar 

  28. A. Gupta, S.K. Srivastava, Paramagnetism, hop** conduction, and weak localization in highly disordered pure and Dy-doped Bi2Se3 nanoplates. J. Appl. Phys. 127, 244302 (2020)

    Article  CAS  Google Scholar 

  29. H. Wang, H. Liu, C.Z. Chang, H. Zuo, Y. Zhao, Y. Sun, Z. **a, K. He, X. Ma, X.C. **e, Q.K. Xue, J. Wang, Crossover between weak antilocalization and weak localization of bulk states in ultrathin Bi2Se3 film. Sci. Rep. 4, 5817 (2014)

    Article  CAS  Google Scholar 

  30. K. Shrestha, M. Chou, D. Graf, H.D. Yang, B. Lorenz, C.W. Chu, Extremely large nonsaturating magnetoresistance and ultrahigh mobility due to topological surface states in the metallic Bi2Te3 topological insulator. Phys. Rev. B 95, 195113 (2017)

    Article  Google Scholar 

  31. H.B. Zhang, J.D. Yao, J.M. Shao, G.W. Yang, Robust topological surface transport with weak localization bulk channels in polycrystalline Bi2Te3. J. Phys. D: Appl. Phys. 49, 095003 (2016)

    Article  Google Scholar 

  32. J. Teng, N. Liu, Y.Q. Li, Mn-doped topological insulators: a review. J. Semicond. 40, 081507 (2019)

    Article  CAS  Google Scholar 

  33. E.P. Arevalo-Lopez, P. Romero-Moreno, J.L. Rosas-Huerta, L. Huerta, C. Minaud, M.L. Marquina, R. Escamilla, M. Romero, Effect of Fe on Bi2Te3: Structure, magnetic properties, and XPS valance band. J. Alloys Compd. 899, 163297 (2022)

    Article  CAS  Google Scholar 

  34. Y.S. Hor, P. Roushan, H. Beidenkopf, J. Seo, D. Qu, J.G. Checkelsky, L.A. Wary, D. Hsieh, Y. **a, S.Y. Xu et al., Development of ferromagnetism in the doped topological insulator Bi2-xMnxTe3. Phys. Rev. B 81, 195203 (2010)

    Article  Google Scholar 

  35. S. Gautam, V. Aggarwal, B. Singh, V.P.S. Awana, R. Ganesan, S.S. Kushvaha, Signature of weak-antilocalization in sputtered in topological insulator Bi2Se3 thin films with varying thickness. Sci. Rep. 12, 9770 (2022)

    Article  CAS  Google Scholar 

  36. N.S. Kander, S. Islam, S. Guchhait, A.K. Das, The effect of Fe-do** on structural, elemental, magnetic, and weak anti-localization properties of Bi2Se3 topological insulator. Appl. Phys. A 129, 253 (2023)

    Article  CAS  Google Scholar 

  37. J. Choi, H.W. Lee, B.S. Kim, S. Choi, J. Choi, J.H. Song, S. Cho, Mn-doped V2VI3 semiconductors: Single crystal growth and magnetic properties. J. Appl. Phys. 97, 10D324 (2005)

    Article  Google Scholar 

  38. R.R. Urkude, A. Sagdeo, R. Rawat, R.J. Choudhury, K. Ashokan, S. Ojha, U.A. Palikundwar, Observation of Kondo behavior in the single crystal of Mn-doped Bi2Se3 topological insulator. AIP Adv. 8, 045315 (2018)

    Article  Google Scholar 

  39. S.V. Chong, G.V.M. Willims, R.L. Moody, The effect of manganese incorporation in Bi2Se3 on the thermal, electrical transport and magnetic properties. J. Alloys Compd. 686, 245–251 (2016)

    Article  CAS  Google Scholar 

  40. V.K. Maurya, C.L. Dhong, C.L. Chen, K. Ashokan, S. Patnaik, High spin driven magnetism and thermoelectricity in Mn doped topological insulator Bi2Se3. J. Magn. Magn. Mater. 456, 1–5 (2018)

    Article  CAS  Google Scholar 

  41. B. Irfan, R. Chatterjee, Magneto-transport and Kondo effect in cobalt doped Bi2Se3 topological insulators. Appl. Phys. Lett. 107, 173108 (2015)

    Article  Google Scholar 

  42. S. Zimmermann, F. Steckel, C. Hess, H.W. Ji, Y.S. Hor, R.J. Cava, B. Buchner, V. Kataev, Spin dynamics and magnetic interactions of Mn dopants in the topological insulator Bi2Te3. Phys. Rev. B 94, 125205 (2016)

    Article  Google Scholar 

  43. A.J. Figueroa, G. Laan, L.J.C. Mclntyre, G. Cibin, A.J. Dent, T. Hesjedal, Local structure and bonding of transition metal dopants in Bi2Se3 topological insulator thin films. J. Phys. Chem. C 119, 17344–17351 (2015)

    Article  CAS  Google Scholar 

  44. H. Yang, L.G. Liu, M. Zhang, X.S. Yang, Growth and magnetic properties of Ni-doped Bi2Se3 topological insulator crystals. Solid State Commun. 241, 26–31 (2016)

    Article  CAS  Google Scholar 

  45. M.C. Biesinger, B.P. Payne, A.P. Grosvenor, L.W.M. Lau, A.R. Gerson, R. St, C. Smart, Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe Co and Ni. Appl. Surf. Sci. 257(7), 2717–2730 (2011)

    Article  CAS  Google Scholar 

  46. S.K. Kanta, S. Paul, T. Chatterjee, H. Dutta, S.K. Pradhan, Microstructure and electrical characterization thermoelectric nanocrystalline Bi2Te3 synthesized by Mechanical alloying. J. Mater. Res. 22, e20190328 (2019)

    Article  CAS  Google Scholar 

  47. N.S. Kander, S. Biswas, A.K. Das, The effect of magnetic impurity (Mn- manganese) incorporation in Bi2Se3 topological insulator. AIP Conf. Proc. 2270, 080001 (2020)

    Article  CAS  Google Scholar 

  48. J. Ge, T. Chen, M. Gao, X. Wang, X. Pan, X. Wang, M. Tang, B. Zhou, J. Du, F. Song et al., Evidence of layered transport of bulk carriers in Fe-doped Bi2Se3 topological insulator. Solid State Commun. 211, 29 (2015)

    Article  CAS  Google Scholar 

  49. D. Sharma, Y. Kumar, P. Kumar, V. Nagpal, S. Patnaik, V.P.S. Awana, High field magneto- transport of mixed topological insulators Bi2Se3-xTex (x = 0, 1, 2 & 3). Solid State Commun. 323, 114097 (2021)

    Article  CAS  Google Scholar 

  50. M.D. Watson, L.J. Collins-Mclntyre, L.R. Shelford, A.I. Coldea, D. Prabhakaran, T. Hesjedal et al., Study of the structural, electric and magnetic properties of Mn-doped Bi2Te3 single crystals. New J. Phys. 15, 103016 (2013)

    Article  Google Scholar 

  51. R. Sultana, G. Gurjar, S. Patnaik, V.P.S. Awana, Growth, characterization and high-field magneto-conductivity of Co0.1Bi2Se3 topological insulator. J. Supercond. Nov. Magn. 32(4), 769–777 (2019)

    Article  CAS  Google Scholar 

  52. F. Wei, C.W. Liu, D. Li, C.Y. Wang, H.R. Zhang, J.R. Sun, X.P.A. Gao, S. Ma, Z. Zhang, Broken mirror symmetry tuned topological transport in PbTe/SnTe heterostructures. Phys. Rev. B 98, 161301 (2018)

    Article  CAS  Google Scholar 

  53. A. Zhang, D. Liu, T. Yang, S. Ma, Z. Zhang, Transport property of topological crystalline insulator SnTe (100) and ferromagnetic insulator heterostructures. J. Mater. Sci. Technol. 131, 204–211 (2022)

    Article  Google Scholar 

  54. S. Ghorai, S.A. Lvanov, R. Skini, P. Svedlindh, Evolution of Griffiths phase and critical behavior of La1-xPbxMnO3±y solid solutions. J. Phys. Condens. Matter. 33(14), 145801 (2021)

    Article  CAS  Google Scholar 

  55. P.T. Phong, L.T.T. Ngan, L.V. Bau, N.X. Phuc, P.H. Nam, L.T.H. Phong, N.V. Dang, I.J. Lee, Magnetic field dependence of Griffith phase and critical behavior in La0.8Ca0.2MnO3 nanoparticles. J. Magn. Magn. Mater. 475, 374–381 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the technical and support stuff of Central Research Facility (CRF)-IIT Kharagpur for providing us the VSM, XPS, SEM, Transport, and XRD measurement facilities. We would also like to thank Dr. Biswarup Satpati, Prof. of the Surface Physics & Material Science Division, Saha Institute of Nuclear Physics, Kolkata-700064, India, for his valuable support and permission for the use of HR-TEM facility.

Funding

The authors declared that no grands, funds, and other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

The 1st author NSK designed the problems after getting interest in quantum phenomena of topological insulators, and performed the growth, characterization, and scientific-analysis. The 2nd author, SB helped to perform magneto-transport characterization as well as the analysis. The 3rd author, SG helped in writing and presenting the manuscript. The 4th author, TS performed the HR-TEM measurement and helped the 1st author to interpret the HR-TEM analysis. The corresponding author, Dr. AKD supervised the whole project and supported in the conceptual discussions. All authors read and approved the final manuscript.

Corresponding author

Correspondence to A. K. Das.

Ethics declarations

Competing interests

The authors declared that they have no competing for financial or non-financial interest to influence this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kander, N.S., Biswas, S., Guchhait, S. et al. The role of Mn in Bi2-xMnxTe3 topological insulator: Structural, compositional, magnetic, and weak anti-localization property analysis. J Mater Sci: Mater Electron 34, 1198 (2023). https://doi.org/10.1007/s10854-023-10620-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10620-6

Navigation