Log in

Good thermoelectric performance and stability in copper sulfide synthesized by hydrothermal method and densified by HP technique

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

We investigate the thermoelectric performance and the stability of polycrystalline p-type Cu2−xS fabricated by hydrothermal method and hot-pressing technique. The relative pure copper sulfides are obtained via the sintering process and their crystal structures are dependence on the atomic ratio of Cu/S. The thermoelectric performance tests show a good figure of merit of ZT = 0.78 at 550 °C. In addition, we repeated measured the thermoelectric parameters to confirm the stability of the samples. The electrical conductivity and the Seebeck coefficient have dramatically change between the different tests, which originate from the variation of carrier concentration and mobility. Nonetheless, the figure of merit ZT maintains unchanged, indicating that the samples synthesized in this work possess quite stable thermoelectric performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article.

References

  1. J.F. Li, W.S. Liu, L.D. Zhao, M. Zhou, High-performance nanostructured thermoelectric materials. NPG Asia Mater 2, 152–158 (2010)

    Article  Google Scholar 

  2. L.E. Bell, Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 321, 1457–1461 (2008)

    Article  CAS  Google Scholar 

  3. A. Abtahi, S. Johnson, S.M. Park, X.Y. Luo, Z.M. Liang, J.G. Mei, K.R. Graham, Designing pi-conjugated polymer blends with improved thermoelectric power factors. J. Mater. Chem. A 7, 19774–19785 (2019)

    Article  CAS  Google Scholar 

  4. Z.H. Wu, S. Zhang, Z.K. Liu, E.Z. Mu, Z.Y. Hu, Thermoelectric converter: strategies from materials to device application. Nano Energy 91, 106692 (2022)

    Article  CAS  Google Scholar 

  5. X. Shi, L. Chen, C. Uher, Recent advances in high-performance bulk thermoelectric materials. Int. Mater. Rev. 61, 379–415 (2016)

    Article  CAS  Google Scholar 

  6. M. Rakshit, D. Jana, D. Banerjee, General strategies to improve thermoelectric performance with an emphasis on tin and germanium chalcogenides as thermoelectric materials. J. Mater. Chem. A 10, 6872–6926 (2022)

    Article  CAS  Google Scholar 

  7. C. Gayner, K.K. Kar, Recent advances in thermoelectric materials. Prog Mater. Sci. 83, 330–382 (2016)

    Article  CAS  Google Scholar 

  8. T.J. Zhu, L.P. Hu, X.B. Zhao, J. He, New insights into intrinsic point defects in V2VI3 thermoelectric materials. Adv. Sci. 3, 1600004 (2016)

    Article  Google Scholar 

  9. L.P. Hu, T.J. Zhu, X.H. Liu, X.B. Zhao, Point defect engineering of high-performance bismuth-telluride-based thermoelectric materials. Adv. Funct. Mater. 24, 5211–5218 (2014)

    Article  CAS  Google Scholar 

  10. G.J. Snyder, E.S. Toberer, Complex thermoelectric materials. Nat. Mater. 7, 105–114 (2008)

    Article  CAS  Google Scholar 

  11. W.Y. Chen, X.L. Shi, J. Zou, Z.G. Chen, Thermoelectric coolers: progress, challenges, and opportunities. Small Methods 6, 2101235 (2022)

    Article  Google Scholar 

  12. S.X. Liu, Y. Yu, D. Wu, X. Xu, L. **e, X.L. Chao, M. Bosman, S.J. Pennycook, Z.P. Yang, J.Q. He, Coherent Sb/CuTe core/shell nanostructure with large strain contrast boosting the thermoelectric performance of n-type PbTe. Adv. Funct. Mater. 31, 20007340 (2021)

    Google Scholar 

  13. X.L. Shi, J. Zou, Z.G. Chen, Advanced thermoelectric design: from materials and structures to devices. Chem. Rev. 120, 7399–7515 (2020)

    Article  CAS  Google Scholar 

  14. Z.G. Chen, X. Shi, L.D. Zhao, J. Zou, High-performance SnSe thermoelectric materials: progress and future challenge. Prog Mater. Sci. 97, 283–346 (2018)

    Article  CAS  Google Scholar 

  15. M. Madhubant, S. Ashutosh, K.S. Abhishek, Recent advances in designing thermoelectric materials. J. Mater. Chem. C 10, 12524–12555 (2022)

    Article  Google Scholar 

  16. W.K. Li, W.W. Yang, W.W. Sheng, J. Shuai, Research progress of interfacial design between thermoelectric materials and electrode materials. ACS Appl. Mater. Interfaces 15, 12611–12621 (2023)

    Article  Google Scholar 

  17. G.J. Tan, M. Ohta, M.G. Kanatzidis, Thermoelectric power generation: from new materials to devices. Philos. T R Soc. A 377, 2018450 (2019)

    Google Scholar 

  18. Y. Li, G.L. Wang, M. Akbari-Saatlu, M. Procek, H.H. Radamson, Si and SiGe nanowire for micro-thermoelectric generator: a review of the current state of the art. Front. Mater. 8, 611078 (2021)

    Article  Google Scholar 

  19. Y.H. Miao, G.L. Wang, Z.Z. Kong, B.Q. Xu, X.W. Zhao, X. Luo, H.X. Lin, Y. Dong, B. Lu, L.P. Dong, J.R. Zhou, J.B. Liu, H.H. Radamson, Review of Si-Based GeSn CVD growth and optoelectronic applications. Nanomaterials 11, 2556 (2021)

    Article  CAS  Google Scholar 

  20. Z.Z. Kong, G.L. Wang, R.R. Liang, J.L. Su, M. Xun, Y.H. Miao, S.H. Gu, J.J. Li, K.H. Cao, H.X. Lin, B. Li, Y.H. Ren, J.F. Li, J. Xu, H.H. Radamson, Growth and strain modulation of GeSn alloys for photonic and electronic applications. Nanomaterials 12, 981 (2022)

    Article  CAS  Google Scholar 

  21. M. Noroozi, G. Jayakumar, K. Zahmatkesh, J. Lu, L. Hultman, M. Mensi, S. Marcinkevicius, B. Hamawandi, M.Y. Tafti, A.B. Ergul, Z. Ikonic, M.S. Toprak, H.H. Radamson, Unprecedented thermoelectric power factor in SiGe Nanowires field-effect transistors. Ecs J. Solid State Sc 6, Q114–Q119 (2017)

    CAS  Google Scholar 

  22. S. Bathula, M. Jayasimhadri, N. Singh, A.K. Srivastava, J. Pulikkotil, A. Dhar, R.C. Budhani, Enhanced thermoelectric figure-of-merit in spark plasma sintered nanostructured n-type SiGe alloys. Appl. Phys. Lett. 101, 213902 (2012)

    Article  Google Scholar 

  23. L.D. Zhao, H.J. Wu, S.Q. Hao, C.I. Wu, X.Y. Zhou, K. Biswas, J.Q. He, T.P. Hogan, C. Uher, C. Wolverton, V.P. Dravid, M.G. Kanatzidis, All-scale hierarchical thermoelectrics: MgTe in PbTe facilitates valence band convergence and suppresses bipolar thermal transport for high performance. Energy Environ. Sci. 6, 3346–3355 (2013)

    Article  CAS  Google Scholar 

  24. T.C. Harman, P.J. Taylor, M.P. Walsh, B.E. LaForge, Quantum dot superlattice thermoelectric materials and devices. Science 297, 2229–2232 (2002)

    Article  CAS  Google Scholar 

  25. Z.H. Ge, L.D. Zhao, D. Wu, X. Liu, B.P. Zhang, J.F. Li, J. He, Low-cost, abundant binary sulfides as promising thermoelectric materials. Mater. Today 19, 227–239 (2016)

    Article  CAS  Google Scholar 

  26. Q. Xu, B. Huang, Y.F. Zhao, Y.F. Yan, R. Noufi, S.H. Wei, Crystal and electronic structures of CuxS solar cell absorbers. Appl. Phys. Lett. 100, 061906 (2012)

    Article  Google Scholar 

  27. Z.H. Ge, B.P. Zhang, Y.X. Chen, Z.X. Yu, Y. Liu, J.F. Li, Synthesis and transport property of Cu1.8S as a promising thermoelectric compound. Chem. Commun. 47, 12697–12699 (2011)

    Article  CAS  Google Scholar 

  28. W.D. Liu, L. Yang, Z.G. Chen, J. Zou, Promising and eco-friendly Cu2X-Based thermoelectric materials: Progress and Applications. Adv. Mater. 32, 1905703 (2020)

    Article  CAS  Google Scholar 

  29. G. Dennler, R. Chmielowski, S. Jacob, F. Capet, P. Roussel, S. Zastrow, K. Nielsch, I. Opahle, G.K.H. Madsen, Are binary copper Sulfides/Selenides really New and Promising Thermoelectric Materials? Adv. Energy Mater. 4, 1301581 (2014)

    Article  Google Scholar 

  30. L. Zhao, X. Wang, F.Y. Fei, J. Wang, Z. Cheng, S. Dou, J. Wang, G.J. Snyder, High thermoelectric and mechanical performance in highly dense Cu2 – xS bulks prepared by a melt-solidification technique. J. Mater. Chem. A 3, 9432–9437 (2015)

    Article  CAS  Google Scholar 

  31. Y. He, T. Day, T. Zhang, H. Liu, X. Shi, L. Chen, G.J. Snyder, High thermoelectric performance in non-toxic earth-abundant copper sulfide. Adv. Mater. 26, 3974–39780 (2014)

    Article  CAS  Google Scholar 

  32. Z.H. Ge, X. Chong, D. Feng, Y.X. Zhang, Y. Qiu, L. ** strategy. Mater. Today Phys. 8, 71–77 (2019)

    Article  Google Scholar 

  33. Q.L. Meng, S. Kong, Z. Huang, Y. Zhu, H.C. Liu, X. Lu, P. Jiang, X. Bao, Simultaneous enhancement in the power factor and thermoelectric performance of copper sulfide by In2S3 do**. J. Mater. Chem. A 4, 12624–12629 (2016)

    Article  CAS  Google Scholar 

  34. Y.X. Zhang, J. Feng, Z.H. Ge, Enhanced thermoelectric performance of Cu1.8S via lattice softening. Chem. Eng. J. 428, 131153 (2022)

    Article  CAS  Google Scholar 

  35. Z.H. Zheng, X.L. Shi, D.W. Ao, W.D. Liu, Y.X. Chen, F. Li, S. Chen, X.Q. Tian, X.R. Li, J.Y. Duan, H.L. Ma, X.H. Zhang, G.X. Liang, P. Fan, Z.G. Chen, Rational band engineering and structural manipulations inducing high thermoelectric performance in n-type CoSb3 thin films. Nano Energy 81, 105683 (2021)

    Article  CAS  Google Scholar 

  36. Y. Yao, B.P. Zhang, J. Pei, Y.C. Liu, J.F. Li, Thermoelectric performance enhancement of Cu2S by Se do** leading to a simultaneous power factor increase and thermal conductivity reduction. J. Mater. Chem. C 5, 7845–7852 (2017)

    Article  CAS  Google Scholar 

  37. Y. He, P. Lu, X. Shi, F. Xu, T. Zhang, G.J. Snyder, C. Uher, L. Chen, Ultrahigh Thermoelectric performance in Mosaic crystals. Adv. Mater. 27, 3639–3644 (2015)

    Article  CAS  Google Scholar 

  38. P. Lukashev, W.R.L. Lambrecht, T. Kotani, M. Van Schilfgaarde, Electronic and crystal structure of Cu2 – xS: full-potential electronic structure calculations. Phys. Rev. B 76, 195202 (2007)

    Article  Google Scholar 

  39. L.J. Wu, Q.P. Meng, C. Jooss, J.C. Zheng, H. Inada, D. Su, Q. Li, Y.M. Zhu, Origin of Phonon Glass-Electron Crystal Behavior in Thermoelectric Layered Cobaltate. Adv. Funct. Mater. 23, 5728–5736 (2013)

    Article  CAS  Google Scholar 

  40. H.L. Liu, X. Shi, F.F. Xu, L.L. Zhang, W.Q. Zhang, L.D. Chen, Q. Li, C. Uher, T. Day, G.J. Snyder, Copper ion liquid-like thermoelectrics. Nat. Mater. 11, 422–425 (2012)

    Article  Google Scholar 

  41. C.L. Wan, Y.F. Wang, N. Wang, W. Norimatsu, M. Kusunoki, K. Koumoto, Development of novel thermoelectric materials by reduction of lattice thermal conductivity. Sci. Technol. Adv. Mater. 11, 044306 (2010)

    Article  Google Scholar 

  42. Y.X. Sun, L.L. **, J. Yang, L.H. Wu, X. Shi, L.D. Chen, J. Snyder, J.H. Yang, W.Q. Zhang, The “electron crystal” behavior in copper chalcogenides Cu2X (X = Se, S). J. Mater. Chem. A 5, 5098–5105 (2017)

    Article  CAS  Google Scholar 

  43. D. Zhang, J.Y. Yang, Q.H. Jiang, L.W. Fu, Y. **ao, Y.B. Luo, Z.W. Zhou, Ternary CuSbSe2 chalcostibite: facile synthesis, electronic-structure and thermoelectric performance enhancement. J. Mater. Chem. A 4, 4188–4193 (2016)

    Article  CAS  Google Scholar 

  44. T. Ohtani, M. Motoki, K. Koh, K. Ohshima, Synthesis of binary copper chalcogenides by mechanical alloying. Mater. Res. Bull. 30, 1495–1504 (1995)

    Article  CAS  Google Scholar 

  45. N. Nandihalli, D.H. Gregory, T. Mori, Energy-Saving pathways for Thermoelectric Nanomaterial Synthesis: Hydrothermal/Solvothermal, Microwave-Assisted, Solution-Based, and Powder Processing. Adv. Sci. 9, 2106052 (2022)

    Article  CAS  Google Scholar 

  46. Y.X. Zhao, H.C. Pan, Y.B. Lou, X.F. Qiu, J.J. Zhu, C. Burda, Plasmonic Cu2-xS nanocrystals: Optical and Structural Properties of copper-deficient copper(I) Sulfides. J. Am. Chem. Soc. 131, 4253–4261 (2009)

    Article  CAS  Google Scholar 

  47. Z.P. Liu, D. Xu, J.B. Liang, J.M. Shen, S.Y. Zhang, Y.T. Qian, Growth of Cu2S ultrathin nanowires in a binary surfactant solvent. J. Phys. Chem. B 109, 10699–10704 (2005)

    Article  CAS  Google Scholar 

  48. P. Roy, S.K. Srivastava, Nanostructured copper sulfides: synthesis, properties and applications. Crystengcomm 17, 7801–7815 (2015)

    Article  CAS  Google Scholar 

  49. L.D. Zhao, V.P. Dravid, M.G. Kanatzidis, The panoscopic approach to high performance thermoelectrics. Energy Environ. Sci. 7, 251–268 (2014)

    Article  CAS  Google Scholar 

  50. K.F. Li, Q.J. Wang, X.Y. Cheng, T. Lv, T.K. Ying, Hydrothermal synthesis of transition-metal sulfide dendrites or microspheres with functional imidazolium salt. J. Alloy Compd. 504, L31–L35 (2010)

    Article  CAS  Google Scholar 

  51. G. Li, M.Y. Liu, H.J. Liu, Controlled synthesis of porous flowerlike Cu2S microspheres with nanosheet-assembly. CrystEngComm 13, 5337–5341 (2011)

    Article  CAS  Google Scholar 

  52. L.D. Zhao, J. He, S. Hao, C.I. Wu, T.P. Hogan, C. Wolverton, V.P. Dravid, M.G. Kanatzidis, Raising the Thermoelectric performance of p-Type PbS with Endotaxial Nanostructuring and Valence-Band Offset Engineering using CdS and ZnS. J. Am. Chem. Soc. 134, 16327–16336 (2012)

    Article  CAS  Google Scholar 

  53. F.H. Shen, Y.Y. Zheng, L. Miao, C.Y. Liu, J. Gao, X.Y. Wang, P.F. Liu, K. Yoshida, H.F. Cai, Boosting high thermoelectric performance of Ni-Doped Cu1.9S by significantly reducing Thermal Conductivity. Acs App Mater Inter 12, 8385–8391 (2020)

    Article  CAS  Google Scholar 

  54. K.P. Zhao, C.X. Zhu, P.F. Qiu, A.B. Blichfeld, E. Eikeland, D.D. Ren, B.B. Iversen, F.F. Xu, X. Shi, L.D. Chen, High thermoelectric performance and low thermal conductivity in Cu2-yS1/3Se1/3Te1/3 liquid-like materials with nanoscale mosaic structures. Nano Energy 42, 43–50 (2017)

    Article  Google Scholar 

  55. P.P. Li, Z.Y. **, Y.M. Qian, Z.W. Fang, D. **ao, G.H. Yu, Supramolecular confinement of single Cu atoms in hydrogel frameworks for oxygen reduction electrocatalysis with high atom utilization. Mater. Today 35, 78–86 (2020)

    Article  CAS  Google Scholar 

  56. J.H. Li, Q. Tan, J.F. Li, Synthesis and property evaluation of CuFeS2-x as earth-abundant and environmentally-friendly thermoelectric materials. J. Alloy Compd. 551, 143–149 (2013)

    Article  CAS  Google Scholar 

  57. M.J. Guan, P.F. Qiu, Q.F. Song, J. Yang, D.D. Ren, X. Shi, L.D. Chen, Improved electrical transport properties and optimized thermoelectric figure of merit in lithium-doped copper sulfides. Rare Met. 37, 282–289 (2018)

    Article  CAS  Google Scholar 

  58. C. Naşcu, I. Pop, V. Ionescu, E. Indrea, I. Bratu, Spray pyrolysis deposition of CuS thin films. Mater. Lett. 32, 73–77 (1997)

    Article  Google Scholar 

  59. M.T.S. Nair, L. Guerrero, P.K. Nair, Conversion of chemically deposited CuS thin films to and by annealing. Semicond. Sci. Tech. 13, 1164–1169 (1998)

    Article  CAS  Google Scholar 

  60. K.P. Zhao, P.F. Qiu, X. Shi, L.D. Chen, Recent advances in Liquid-Like Thermoelectric materials. Adv. Funct. Mater. 30, 1903867 (2020)

    Article  CAS  Google Scholar 

  61. X.Y. Zhou, Y.C. Yan, X. Lu, H.T. Zhu, X.D. Han, G. Chen, Z.F. Ren, Routes for high-performance thermoelectric materials. Mater. Today 21, 974–988 (2018)

    Article  CAS  Google Scholar 

  62. X.L. Shi, A.Y. Wu, T.L. Feng, K. Zheng, W.D. Liu, Q. Sun, M. Hong, S.T. Pantelides, Z.G. Chen, J. Zou, High thermoelectric performance in p-type Polycrystalline Cd-doped SnSe achieved by a combination of Cation Vacancies and localized Lattice Engineering. Adv. Energy Mater. 9, 1803242 (2019)

    Article  Google Scholar 

  63. W.D. Liu, X.L. Shi, R. Moshwan, L. Yan, Z.G. Chen, J. Zou, Solvothermal synthesis of high-purity porous Cu1.7Se approaching low lattice thermal conductivity. Chem. Eng. J. 375, 121996 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported the Projection of State Key Laboratory of Environment-friendly Energy Materials, Southwest University of Science and Technology (No. 20FKSY23).

Author information

Authors and Affiliations

Authors

Contributions

XZ contributed to the conception of the study and contributed significantly to analysis and revised the manuscript. FL performed the experiments and the data analyses and wrote the manuscript. JF and HY helped perform the analysis with constructive discussions.

Corresponding author

Correspondence to **aowei Zhang.

Ethics declarations

Conflict of interest

The authors have no conflicts to declare.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, F., Yu, H., Fu, J. et al. Good thermoelectric performance and stability in copper sulfide synthesized by hydrothermal method and densified by HP technique. J Mater Sci: Mater Electron 34, 1163 (2023). https://doi.org/10.1007/s10854-023-10581-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10581-w

Navigation