Log in

Nanoparticles size effect on transport properties of doped manganite elaborated by sol–gel route

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In the present work, Sr-doped lanthanum manganite is successfully synthesized using sol–gel route. Obtained compounds are annealed at 600 and 800 °C in the aim to modify the nanoparticles size. Structural, morphological, and electrical properties are characterized by X-ray diffraction, transmission electron microscopy, and impedance spectroscopy technique, respectively. For both samples, a metal–semiconductor transition is observed. It is noticed that the particle size increase leads to an increase in the transition temperature. According to the conductivity spectra, the dispersive frequency region reveals the coexistence of hop** and tunneling process models. The frequency dependence of the disorder and the hop** energies explains the charge carriers dynamics. A close resemblance between the calculated activation energies coming from the hop** frequency and the relaxation time is observed. This resemblance establishes that the conduction and the relaxation processes are attributed to the same origin. Besides, the scaling representation discloses the validity of the time–temperature superposition principle presenting the universality of the conductivity response. The temperature and the frequency dependence of the conduction mechanism are confirmed by the Summerfield scaling model. Such interesting phenomena are determined for the bigger nanoparticles system. In fact, the particle size increase provokes the increase in the electrical conductivity which is confirmed by the activation energy decrease. This result is investigated in terms of core–shell model. Therefore, the particle growth allows improving the performance of the Solid Oxide Fuel Cells using the mixed-valence Sr-doped lanthanum manganite as an electrode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The data included in this manuscript are available and can be discussed (or shared), on request from the corresponding author.

References

  1. N.G. Peter, F. Ibrahim, Farid, Hanna, E. Ahmed, Hannora, Structural, electrical and magnetic properties of perovskite La0.4Sr0.6MnO3 prepared by mechanochemical synthesis technique. J. Mater. Sci.: Mater. Electron 33, 828 (2022)

    Google Scholar 

  2. G. Zhang, H. Wang, J. Chen, D. Liu, T. Li, H. Dai, Effects of Ho do** on the structural, dielectric, and magnetic properties of GdMnO3 ceramics. J. Mater. Sci.: Mater. Electron 34, 366 (2023)

    CAS  Google Scholar 

  3. B. Hou, Y. Yang, S.A. Yang, J. Li, J. Hu, J. Ma, H. Zhang, L. Kong, Q. Ye, Q. Chen, Influence of Sr-do** on the metal–insulator transition temperature and magnetoelectric properties of La0.67Ca0.33Mn0.98V0.02O3 polycrystalline ceramics. J. Mater. Sci.: Mater. Electron 34, 262 (2023)

    CAS  Google Scholar 

  4. CN. Ramachandra Rao, B. Raveau, Colossal Magnetoresistance, Charge Ordering and Related Properties of Manganese Oxides (World Scientific, 1998)

  5. H. Xu, K. Huang, C. Li, J. Qi, J. Li, G. Sun, F. Wang, H. Li, Y. Sun, C. Ye, L. Yang, Yong**g Pan, Ming Feng, Weiming Lü, enhanced magnetoresistance and electroresistance at high temperature in a nano-matrix manganite. Acta Mater. 238, 118219 (2022)

    Article  CAS  Google Scholar 

  6. T. Kanıkırmızı, T. İzgi, N. Bayri, H. Gencer, V.S. Kolat, M. Pektas, S. Atalay, Structural, magnetic and magnetocaloric properties of Ru doped Pr0.67Ca0.33Mn1–xRuxO3 manganites. J. Mater. Sci.: Mater. Electron 33, 21778 (2022)

    Google Scholar 

  7. A. Andreja Žužić, A. Ressler, J. Šantić, A. Macan, Gajović, The effect of synthesis method on oxygen nonstoichiometry and electrical conductivity of Sr-doped lanthanum manganites. J. Alloys Compd. 907, 164456 (2022)

    Article  Google Scholar 

  8. F. Jiyu, L. Xu, X. Zhang, Y. Shi, W. Zhang, Y. Zhu, B. Gao, B. Hong, L. Zhang, W. Tong, L. Pi, Y. Zhang, Effect of A-site average radius and cation disorder on magnetism and electronic properties in manganite La0.6A0.1Sr0.3MnO3 (A = sm, Dy, Er). J. Mater. Sci. 50, 2130 (2015)

    Article  Google Scholar 

  9. B. Sudakshina, M.V. Suneesh, B. Arun, D. Chandrasekhar Kakarla, M. Vasundhara, Effects of Cr, Co, Ni substitution at Mn-site on structural, magnetic properties and critical behaviour in Nd0.67Ba0.33MnO3 mixed-valent manganite. J. Magn. Magn. Mater 548, 168980 (2022)

    Article  CAS  Google Scholar 

  10. V. Gupta, B. Raina, K.K. Bamzai, Preparation, structural, spectroscopic and magneto-electric properties of multiferroic cadmium doped neodymium manganite. J. Mater. Sci.: Mater. Electron 29, 8947 (2018)

    CAS  Google Scholar 

  11. J.X. Flores-Lasluisa, F. Huerta, D. Cazorla-Amorós, E. Morallón, Manganese oxides/LaMnO3 perovskite materials and their application in the oxygen reduction reaction. Energy 247, 123456 (2022)

    Article  CAS  Google Scholar 

  12. S. **, T.H. Tifel, M. Mc., R.A. Cormack, R. Fastenacht, L.H. Ramesh, Chen, Thousandfold change in resistivity in magnetoresistive La-Ca-Mn-O films. Science 264, 413 (1994)

    Article  CAS  Google Scholar 

  13. M.H. Ghozza, I.S. Yahia, Impact of gadolinium do** on structure, electrical and magnetic properties of GdxCd1–xMnO3 manganite nanoparticles. J. Mater. Sci.: Mater. Electron 32, 11628 (2021)

    CAS  Google Scholar 

  14. Y. Li, H. Zhang, X. Liu, Q. Chen, Q. Chen, Electrical and magnetic properties of La1 – xSrxMnO3 (0.1 ≤ x ≤ 0.25) ceramics prepared by sol–gel technique. Ceram. Int. 45, 16323 (2019)

    Article  Google Scholar 

  15. S. Zhao, X. Yue, X. Liu, Tuning room temperature Tp and MR of La1 – y(Cay–xSrx)MnO3 polycrystalline ceramics by Sr do**. Ceram. Int. 43, 4594 (2017)

    Article  CAS  Google Scholar 

  16. C. Zener, Interaction between the d-Shells in the transition metals. II. Ferromagnetic Compounds of manganese with perovskite structure. Phys. Rev. 82, 403 (1951)

    Article  CAS  Google Scholar 

  17. A.K. Bhunia, T.N. Ghosh, Study of the structural properties and temperature-dependent hop** conductivity mechanism to the analysis of nonlinearity exponent in Nd0.7–xCexSr0.3MnO3 manganites. J. Mater. Sci.: Mater. Electron 33, 17963 (2022)

    CAS  Google Scholar 

  18. G. Tang, Y. Yu, W. Chen, Y. Cao, The electrical resistivity and thermal infrared properties of La1 – xSrxMnO3 compounds. J. Alloys Compd. 461, 486 (2008)

    Article  CAS  Google Scholar 

  19. A. Anane, C. Dupas, K. Le Dang, J.P. Renard, P. Veillet, A.M. de Leon Guevara, F. Millot, L. Pinsardi, A. Revcolevschi, Transport properties and magnetic behaviour of La1–xSrxMnO3 single crystals. J. Phys.: Condens. Matter 7, 7015 (1995)

    CAS  Google Scholar 

  20. S. Tao, F. Ji, Y. Liu, G. Dong, S. Zhang, Q. Chen, X. Liu, La1–xSrxMnO3:Ag0.2 (0.1 ≤ x ≤ 0.2) ceramics with large room-temperature TCR for uncooled infrared bolometers. J. Eur. Ceram. Soc. 39, 352 (2019)

    Article  Google Scholar 

  21. P. Van Cuong, D.-H. Kim, Effect of strontium do** level on electrical transport and magnetic properties of La1–xSrxMnO3 perovskite nanoparticles. J. Phys.: Conf. Series 187, 012090 (2009)

    Google Scholar 

  22. C.B. Wang, Y.J. Shen, Y.X. Zhu, L.M. Zhang, Transport properties of La1-xSrxMnO3 ceramics above metal–insulator transition temperature. Phys. B: Condens. Matter 461, 57 (2015)

    Article  CAS  Google Scholar 

  23. S. Majumdar, S. van Dijken, Pulsed laser deposition of La1–xSrxMnO3: thin-film properties and spintronic applications. J. Phys. D 47, 034010 (2013)

    Article  Google Scholar 

  24. P. Phong, S. Jang, B. Huy, Y.-I. Lee, I.-J. Lee, Structural, magnetic, infrared and Raman studies of La0.8SrxCa0.2–xMnO3 (0 ≤ x ≤ 0.2). J. Mater. Sci.: Mater. Electron 24, 2292 (2013)

    CAS  Google Scholar 

  25. W. Hizi, H. Rahmouni, M. Gassoumi, K. Khirouni, S. Dhahri, Transport properties of La0.9Sr0.1MnO3 manganite. Eur. Phys. J. Plus 135, 1 (2020)

    Article  Google Scholar 

  26. A.S. Khan, M.F. Nasir, M.T. Khan, A. Murtaza, M.A. Hamayun, Study of structural, magnetic and radio frequency heating aptitudes of pure and (Fe-III) doped manganite (La1 – xSrxMnO3) and their incorporation with Sodium Poly-Styrene Sulfonate (PSS) for magnetic hyperthermia applications. Phys. B: Condens. Matter 600, 412627 (2021)

    Article  CAS  Google Scholar 

  27. W. Hizi, H. Rahmouni, N.E. Gorji, A. Guesmi, N.B. Hamadi, L. Khezami, E. Dhahri, K. Khirouni, M. Gassoumi, Impact of sintering temperature on the electrical properties of La0.9Sr0.1MnO3 manganite. Catalysts 12, 340 (2022)

    Article  CAS  Google Scholar 

  28. S. Zhao, X.-J. Yue, X. Liu, Influence of Sr do** on structural, electrical and magnetic properties of La0.7Ca0.3MnO3 nanoparticles. Ceram. Int. 43, 13240 (2017)

    Article  CAS  Google Scholar 

  29. S.P. Jiang, Development of lanthanum strontium manganite perovskite cathode materials of solid oxide fuel cells: a review. J. Mater. Sci. 43, 6799 (2008)

    Article  CAS  Google Scholar 

  30. J. Sacanell, J. Hernández Sánchez, A.E. Rubio López, H. Martinelli, J. Siepe, A.G. Leyva, V. Ferrari, D. Juan, M. Pruneda, A.M. Gómez, D.G. Lamas, Oxygen reduction mechanisms in nanostructured La0.8Sr0.2MnO3 cathodes for solid oxide fuel cells. J. Phys. Chem. 121, 6533 (2017)

    CAS  Google Scholar 

  31. R. Epherre, E. Duguet, S. Mornet, E. Pollert, S. Louguet, S. Lecommandoux, C. Schatz, G. Goglio, Manganite perovskite nanoparticles for self-controlled magnetic fluid hyperthermia: about the suitability of an aqueous combustion synthesis route. J. Mater. Chem. 21, 4393 (2011)

    Article  CAS  Google Scholar 

  32. H.A. Reshi, S. Pillai, V. Shelke, Comparative study on multifunctional behavior of rare-earth manganites with micro and nano grain size. J. Mater. Sci.: Mater. Electron 25, 3795 (2014)

    CAS  Google Scholar 

  33. A. Banerjee, S. Pal, S. Bhattecharya, B.K. Chaudhuri, H.D. Yang, Particle size and magnetic field dependent resistivity and thermoelectric power of La0.5Pb0.5MnO3 above and below metal–insulator transition. J. Appl. Phys. 91, 5125 (2002)

    Article  CAS  Google Scholar 

  34. G. Venkataiah, Y. Kalyana Lakshmi, V. Prasad, P. Venugopal Reddy, Influence of particle size on electrical transport properties of la0.67sr0.33MnO3 manganite system. J. Nanosci. Nanotechnol. 7, 200 (2007)

    Article  Google Scholar 

  35. N. Anulekha Dutta, R. Gayathri, Ranganathan, Effect of particle size on the magnetic and transport properties of La0.875Sr0.125MnO3. Phys. Rev. B 68, 054432 (2003)

    Article  Google Scholar 

  36. M.A. Bhat, A. Modi, N.K. Gaur, The effect of sintering temperature on the magneto-transport properties of Pr0.67Sr0.332xAgxMnO3 (0 ≤x ≤ 0.1) manganites. J. Mater. Sci.: Mater. Electron 26, 6444 (2015)

    CAS  Google Scholar 

  37. A. Gaur, G.D. Varma, Sintering temperature effect on electrical transport and magnetoresistance of nanophasic La0.7Sr0.3MnO3. J. Phys.: Condens. Matter 18, 8837 (2006)

    CAS  Google Scholar 

  38. Y. Kalyana Lakshmi, P. Venugopal, Reddy, Influence of sintering temperature and oxygen stoichiometry on electrical transport properties of La0.67Na0.33MnO3 manganite. J. Alloys Compd. 470, 67 (2009)

    Article  CAS  Google Scholar 

  39. H. Baaziz, N.K. Maaloul, A. Tozri, H. Rahmouni, S. Mizouri, K. Khirouni, E. Dhahri, Effect of sintering temperature and grain size on the electrical transport properties of La0.67Sr0.33MnO3 manganite. Chem. Phys. Lett. 640, 77–81 (2015)

    Article  CAS  Google Scholar 

  40. G. Venkataiah, D.C. Krishna, M. Vithal, S.S. Rao, S.V. Bhat, V. Prasad, S.V. Subramanyam, P. Venugopal, Reddy, Effect of sintering temperature on electrical transport properties of La0.67Ca0.33MnO3. Phys. B 357, 370 (2005)

    Article  CAS  Google Scholar 

  41. Kumar, Navin, R. Kurchania, The effect of particle size on structural, magnetic and transport properties of La0.7Sr0.3MnO3 nanoparticles. Ceram. Int. 44, 4973 (2018)

    Article  Google Scholar 

  42. X. Yu Zhou, Zhu, S. Li, Effect of particle size on magnetic and electric transport properties of La0.67Sr0.33MnO3 coatings. Phys. Chem. Chem. Phys. 17, 31161 (2015)

    Article  Google Scholar 

  43. W. Hizi, M. Gassoumi, H. Rahmouni, A. Guesmi, N.B. Hamadi, E. Dhahri, Effect of sintering temperature and polarization on the dielectric and electrical properties of La0.9Sr0.1MnO3 manganite in alternating current. Materials 15, 3683 (2022)

    Article  CAS  Google Scholar 

  44. P. Liu, V.M.H. Ng, Z. Yao, J. Zhou, Y. Lei, Z. Yang, Lv. Hualiang, L.B. Kong, Facile synthesis and hierarchical assembly of flowerlike NiO structures with enhanced dielectric and microwave absorption properties. ACS Appl. Mater. Interfaces 9, 16404 (2017)

    Article  CAS  Google Scholar 

  45. B. Zhang, F. Meng, J. Feng, J. Wang, Y. Wu, L. Jiang, Manipulation of colloidal particles in three dimensions via microfluid engineering. Adv. Mater. 30, 1707291 (2018)

    Article  Google Scholar 

  46. J. Peijiang Liu, Y. Peng, M. Chen, W. Liu, Z.-H. Tang, K. Guo, Yue, A general and robust strategy for in-situ templated synthesis of patterned inorganic nanoparticle assemblies. Giant 8, 100076 (2021)

    Article  Google Scholar 

  47. N. Zhang, W. Ding, W. Zhong, D. **ng, Y. Du, Tunnel-type giant magnetoresistance in the granular perovskite La 0.85Sr0.15MnO3. Phys. Rev. B 56, 8138 (1997)

    Article  CAS  Google Scholar 

  48. N.F. Mott, Conduction in non-crystalline materials. Phil. Mag. 19, 835 (1969)

    Article  CAS  Google Scholar 

  49. N.F. Mott, Polarons, Mater. Res. Bull. 13, 1389 (1978)

    Article  CAS  Google Scholar 

  50. N.F. Mott, Conduction in glasses containing transition metal ions. J. Non-cryst. Solids 1, 1 (1968)

    Article  CAS  Google Scholar 

  51. N.F. Mott, The origin of some ideas on non-crystalline materials. J. Non-cryst. Solids 28, 147 (1978)

    Article  CAS  Google Scholar 

  52. N.F. Mott, E.A. Davis, R.A. Street, States in the gap and recombination in amorphous semiconductors. Phil. Mag. 32, 961 (1975)

    Article  CAS  Google Scholar 

  53. N.F. Mott, E.A. Davis, Electronic processes in non-crystalline materials (Great Britain, Oxford, 1979)

    Google Scholar 

  54. I.G. Austin, N.F. Mott, Polarons in crystalline and non-crystalline materials. Adv. Phys. 18, 41 (1969)

    Article  CAS  Google Scholar 

  55. P. Nagels, Electronic transport in amorphous semiconductors, amorphous semiconductors (Springer, Berlin, 1979), p.113

    Google Scholar 

  56. A.K. Jonscher, M.S. Frost, Weakly frequency-dependent electrical conductivity in a chalcogenide glass. Thin Solid Films 37, 267 (1976)

    Article  CAS  Google Scholar 

  57. A.K. Jonscher, The universal dielectric response. Nature (London) 267, 673 (1977)

    Article  CAS  Google Scholar 

  58. S.R. Elliott, A theory of ac conduction in chalcogenide glasses. Phil. Mag. 36, 1291 (1977)

    Article  CAS  Google Scholar 

  59. S.R. Elliott, F.E.G. Henn, Application of the anderson-stuart model to the AC conduction of ionically conducting materials. J. Non-cryst. Solids 116, 179 (1990)

    Article  CAS  Google Scholar 

  60. S.R. Elliott, AC conduction in amorphous chalcogenide and pnictide semiconductors. Adv. Phys. 36, 135 (1987)

    Article  CAS  Google Scholar 

  61. A. Ghosh, Transport properties of vanadium germanate glassy semiconductors. Phys. Rev. B 42, 5665 (1990)

    Article  CAS  Google Scholar 

  62. A. Ghosh, Frequency-dependent conductivity in bismuth-vanadate glassy semiconductors. Phys. Rev. B 41, 1479 (1990)

    Article  CAS  Google Scholar 

  63. W. Meyer, H. Neldel, Z. für technische Physik 12, 588 (1937)

    Google Scholar 

  64. Y. Moualhi, H. Rahmouni, M. Gassoumi, K. Khirouni, Summerfield scaling model and conduction processes defining the transport properties of silver substituted half doped (La–Ca) MnO3 ceramic. Ceram. Int. 46, 24710 (2020)

    Article  CAS  Google Scholar 

  65. S. Halder, A. Duttaa, T.P. Sinha, Time–temperature superposition in the grain and grain boundary response regime of A2HoRuO6 (A = Ba, Sr, Ca) double perovskite ceramics: a conductivity spectroscopic analysis. RSC Adv. 7, 43812 (2017)

    Article  CAS  Google Scholar 

  66. D.P. Singh, K. Shahi, K.K. Kar, Superlinear frequency dependence of AC conductivity and its scaling behavior in xAgI-(1–x)AgPO3 glass superionic conductors. Solid State Ion. 287, 89 (2016)

    Article  CAS  Google Scholar 

  67. A.R. Kulkarni, P. Lunkenheimer, A. Loidl, Scaling behaviour in the frequency dependent conductivity of mixed alkali glasses. Solid State Ion. 112, 69 (1998)

    Article  CAS  Google Scholar 

  68. S. Summerfield, Universal low-frequency behaviour in the ac hop** conductivity of disordered systems. Philos. Mag. B 52, 9 (1985)

    Article  Google Scholar 

  69. B. Roling, A. Happe, K. Funke, M.D. Ingram, Carrier concentrations and relaxation spectroscopy: new information from scaling properties of conductivity spectra in ionically conducting glasses. Phys. Rev. Lett. 78, 2160 (1997)

    Article  CAS  Google Scholar 

  70. B. Roling, Scaling properties of the conductivity spectra of glasses and super cooled melts. Solid State Ion. 105, 185 (1998)

    Article  CAS  Google Scholar 

  71. B. Roling, C. Martiny, K. Funke, Information on the absolute length scales of ion transport processes in glasses from electrical conductivity and tracer diffusion data. J. Non-cryst. Solids 249, 201 (1999)

    Article  CAS  Google Scholar 

  72. A. Ghosh, A. Pan, Scaling of the conductivity spectra in ionic glasses: dependence on the structure. Phys. Rev. Lett. 84, 2188 (2000)

    Article  CAS  Google Scholar 

  73. A. Ghosh, M. Sural, Conductivity spectra of sodium fluoro zirconate glasses. J. Chem. Phys. 114, 3243 (2001)

    Article  CAS  Google Scholar 

  74. A. Ghosh, M. Sural, A new scaling property of fluoride glasses: concentration and temperature independence of the conductivity spectra. Europhys. Lett. 47, 688 (1999)

    Article  CAS  Google Scholar 

  75. D.L. Sidebottom, Universal approach for scaling the ac conductivity in ionic glasses. Phys. Rev. Lett. 82, 3653 (1999)

    Article  CAS  Google Scholar 

  76. D.L. Sidebottom, Dimensionality dependence of the conductivity dispersion in ionic materials. Phys. Rev. Lett. 83, 983 (1999)

    Article  CAS  Google Scholar 

  77. S. Fuquan Ji, Z. Zhao, T. Li, Y. Sun, G. Liu, S. Dong, Zhang, X. Liu, Effect of sintering temperature on room-temperature electrical and magnetic properties of La0.625(Ca0.315Sr0.06)MnO3 polycrystalline ceramics. Mater. Res. Express 6, 086326 (2019)

    Article  Google Scholar 

  78. K.Y. Pan, S.A. Halim, K.P. Lim, W.M. Daud, S.K. Chen, Effect of Sintering temperature on microstructure, electrical and magnetic properties of La0.85K0.15MnO3 prepared by sol-gel method. J. Supercond. Novel Magn. 25, 1177 (2012)

    Article  CAS  Google Scholar 

  79. G. Venkataiah, Y.K. Lakshmi, P.V. Reddy, Influence of sintering temperature on resistivity, magnetoresistance and thermopower of La0.67Ca0.33MnO3. PMC Phys. B 1, 7 (2008)

    Article  Google Scholar 

  80. D. Salazar, D. Arias, O.J. Durá, M.A. de la López Torre, Thermopower and electrical resistivity of La1 – xSrxMnO3 (x = 0.2, 0.3): Effect of nanostructure on small polaron transport. J. Alloys Compd. 583, 141 (2014)

    Article  CAS  Google Scholar 

  81. Y.-H. Huang, C.-H. Yan, Z.-M. Wang, C.-S. Liao, G.-X. Xu, Variation of structural, magnetic and transport properties in RE0.7Sr0.3MnO3 granular perovskites. Solid State Commun. 118, 541 (2001)

    Article  CAS  Google Scholar 

  82. H. Rahmouni, M. Nouiri, R. Jemai, N. Kallel, F. Rzigua, A. Selmi, K. Khirouni, S. Alaya, Electrical conductivity and complex impedance analysis of 20% Ti-doped La0.7Sr0.3MnO3 perovskite. J. Magn. Magn. Mater. 316, 23 (2007)

    Article  CAS  Google Scholar 

  83. H. Rahmouni, R. Jemai, M. Nouiri, N. Kallel, F. Rzigua, A. Selmi, K. Khirouni, S. Alaya, Admittance spectroscopy and complex impedance analysis of Ti-modified La0.7Sr0.3MnO3. J. Cryst. Growth 310, 556 (2008)

    Article  CAS  Google Scholar 

  84. H. Rahmouni, A. Selmi, K. Khirouni, N. Kallel, Chromium effects on the transport properties in La0.7Sr0.3Mn1–xCrxO3. J. Alloys Compd. 533, 93 (2012)

    Article  CAS  Google Scholar 

  85. D.C. Worledge, G. Jeffrey Snyder, M.R. Beasley, T.H. Geballe, R. Hiskes, S. DiCarolis, Anneal-tunable Curie temperature and transport of La0.67Ca0.33MnO3. J. Appl. Phys. 80, 5158 (1996)

    Article  CAS  Google Scholar 

  86. S.O. Manjunatha, A. Rao, V.P.S. Awana, G.S. Okram, Investigation on magnetic, electrical and thermoelectric power of Bi-substituted La0.8Ca0.2MnO3 manganites. J. Magn. Magn. Mater. 394, 130 (2015)

    Article  CAS  Google Scholar 

  87. L.E. Hueso, P. Sande, D.R. Miguéns, J. Rivas, Tuning of the magnetocaloric effect in La0.67Ca0.33MnO3–δ nanoparticles synthesized by sol–gel techniques. J. Appl. Phys. 91, 9943 (2002)

    Article  CAS  Google Scholar 

  88. S. Budhy Kurniawan, A. Winarsih, A. Imaduddin, Manaf, Correlation between microstructure and electrical transport properties of La0.7(Ba1 – xCax)0.3MnO3 (x = 0 and 0.03) synthesized by sol-gel. Phys. B 532, 161 (2018)

    Article  Google Scholar 

  89. H. **, J.H. Choi, H. Jang, Ji, S.M. Ryu, Oh, Microstructure and cathodic performance of La0.9Sr0.1MnO3 electrodes according to particle size of starting powder. J. Power Sour. 87, 92 (2000)

    Article  Google Scholar 

  90. P. Bruce, High and low frequency Jonscher behavior of an ionically conducting glass. Solid State Ion. 15, 247 (1985)

    Article  CAS  Google Scholar 

  91. K. Funke, Jump relaxation in solid electrolytes. Prog. Solid State Chem. 22, 111 (1993)

    Article  CAS  Google Scholar 

  92. A. Miller, E. Abrahams, Impurity conduction at low concentrations. Phys. Rev. 120, 745 (1960)

    Article  CAS  Google Scholar 

  93. M.V. Nikolic, M.D. Lukovic, N.J. Labus, Influence of humidity on complex impedance and dielectric properties of iron manganite (FeMnO3). J. Mater. Sci.: Mater. Electron 30, 12399 (2019)

    CAS  Google Scholar 

  94. H. Rahmouni, M. Smari, B. Cherif, E. Dhahri, K. Khirouni, Conduction mechanism, impedance spectroscopic investigation and dielectric behavior of La0.5Ca0.5–xAgxMnO3 manganites with compositions below the concentration limit of silver solubility in perovskites (0 ≤ x ≤ 0.2). Dalton Trans. 44, 10457 (2015)

    Article  CAS  Google Scholar 

  95. N. Elghoul, M. Wali, S. Kraiem, H. Rahmouni, E. Dhahri, K. Khirouni, Sodium deficiency effect on the transport properties of La0.8Na0.2–xxMnO3 manganites. Phys. B: Phys. Condens. Matter. 478, 108 (2015)

    Article  CAS  Google Scholar 

  96. Hu. Jifan, H. Qin, Giant magnetoimpedance effect in La0.7Ca0.3MnO3 under low magnetic fields. J. Magn. Magn. Mater. 231, 1 (2001)

    Article  Google Scholar 

  97. M. Idrees, M. Nadeem, M.M. Hassan, Investigation of conduction and relaxation phenomena in LaFe0.9Ni0.1O3 by impedance spectroscopy. J. Phys. D 43, 155401 (2010)

    Article  Google Scholar 

  98. S. Komine, E. Iguchi, Dielectric properties in LaFe0.5Ga0.5O3. J. Phys. Chem. Solids 68, 1504 (2007)

    Article  CAS  Google Scholar 

  99. E. Iguchi, K. Ueda, W.H. Jung, Conduction in LaCoO3 by small-polaron hop** below room temperature. Phys. Rev. B 54, 17431 (1996)

    Article  CAS  Google Scholar 

  100. I. Ahmad, M.J. Akhtar, R.T.A. Khan, M.M. Hasan, Change of Mott variable range to small polaronic hole hop** conduction mechanism and formation of Schottky barriers in Nd0.9Sr0.1FeO3. J. Appl. Phys. 114, 034103 (2013)

    Article  Google Scholar 

  101. Y. Huang, K. Wu, Z. **ng, C. Zhang, X. Hu, P. Guo, J. Zhang, J. Li, Understanding the validity of impedance and modulus spectroscopy on exploring electrical heterogeneity in dielectric ceramics. J. Appl. Phys. 125, 084103 (2019)

    Article  Google Scholar 

  102. J. Maxwell, Electricity and magnetics, 1st edn. (Oxford University Press, London, 1873), p.328

    Google Scholar 

  103. K.W. Wagner, Zur theorie der unvollkommenen dielektrika. Ann. Phys. 345, 817–855 (1913)

    Article  Google Scholar 

  104. P.K. Pragati Singh, P.A. Jha, P. Jha, Singh, Influence of sintering temperature on ion dynamics of Na0.5Bi0.5TiO3–δ: suitability as an electrolyte material for SOFC. Int. J. Hydrog. Energy 45, 17006 (2020)

    Article  Google Scholar 

  105. S. Indrajeet Mandala, K. Chakraborty, A.D. Annapurna, J. Sharma, A.R. Mukhopadhyay, Allu, Understanding the sodium-ion dynamics in NASICON (Na3Al2P3O12) glass containing NaF: scaling of electrical conductivity spectra. J. Alloys Compd. 885, 160952 (2021)

    Article  Google Scholar 

  106. R. Belin, G. Taillades, A. Pradel, M. Ribes, Ion dynamics in superionic chalcogenide glasses: complete conductivity spectra. Solid State Ion. 136, 1025 (2000)

    Article  Google Scholar 

  107. S. Murugavel, B. Roling, Ac conductivity Spectra of alkali tellurite glasses: composition-dependent deviations from the summerfield scaling. Phys. Rev. Lett. 89, 195902 (2002)

    Article  CAS  Google Scholar 

  108. H.E. Taylor, The dielectric relaxation spectrum of glass. Trans. Faraday Soc. 52, 873 (1956)

    Article  CAS  Google Scholar 

  109. S.D. Baranovskii, H. Cordes, On the conduction mechanism in ionic glasses. J. Chem. Phys. 111, 7546 (1999)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study is supported by the Tunisian Ministry of Higher Education and Scientific Research.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

All the authors have accepted full responsibility for the content of this manuscript and have given their approval to its submission.

Corresponding author

Correspondence to W. Hizi.

Ethics declarations

Competing interests

The authors declare that they have no conflicts of interest. 

Ethical approval

This article does not contain any studies involving animal or human participants performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hizi, W., Rahmouni, H., Khirouni, K. et al. Nanoparticles size effect on transport properties of doped manganite elaborated by sol–gel route. J Mater Sci: Mater Electron 34, 1173 (2023). https://doi.org/10.1007/s10854-023-10573-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10573-w

Navigation