Log in

Ergodic-nonergodic relaxor behavior, recoverable energy storage density, and dynamic hysteresis scaling in NKBT ferroelectrics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

This article has been updated

Abstract

The present study examined the scaling behavior of the room temperature ferroelectric hysteresis and switching current curves for lead-free and eco-friendly K+1 rich NBT (Na0.5Bi0.5TiO3) -based compositions. The scaling behavior between the logarithms of the hysteresis area \(<A>\) and the logarithm of the amplitude (\({E}_{0}\)) of the field evolve in three regions for all the compositions. Three different stages have been described in detail with the amplitude of the electric field (E). The domain dynamic behavior in different regions has been revealed with the help of the power scaling law. Based on the shape, size, and value of the Polarization (P), switching current (I), and, Strain curve (S), the evolution of relaxor phases and domain switching mechanism were studied for the K+1—rich substituted NBT. The recoverable energy storage density (\({W}_{\mathrm{rec}}\)) of the material is also influenced by the shape of the P–E loop and analyzed by scaling of \({W}_{\mathrm{rec}}.\) Interestingly, three regions had been observed in the ln \({W}_{\mathrm{rec}}\mathrm{ vs ln}{E}_{0}\) graph for the pinched type P–E loop, whereas the graph showed linear relation for the slanted type of loop. Although all of the compositions in this study exhibited good \({W}_{\mathrm{rec}}\), the optimum \({W}_{\mathrm{rec}}\) was found to be 0.5 J/cm3 for NKBT-30, which showed a breakdown strength of 79 kV/cm. We also established a complete scenario for the NKBT series in terms of the evolution of relaxor nature based on the ferroelectric properties and their applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author, upon reasonable request.

Change history

  • 23 April 2023

    The original article was updated due to Table 1 was placed wrongly, and not near to its citation

References

  1. G. Yu, X. Dong, G. Wang, F. Cao, X. Chen, H. Nie, J. Appl. Phys. 107, 106102 (2010)

    Article  Google Scholar 

  2. J.-M. Liu, H.L.W. Chan, C.L. Choy, Y.Y. Zhu, S.N. Zhu, Z.G. Liu, N.B. Ming, Appl. Phys. Lett. 79, 236 (2001)

    Article  CAS  Google Scholar 

  3. J. Shi, H. Fan, X. Liu, Q. Li, Phys. Status Solidi A 211, 2388 (2014)

    Article  CAS  Google Scholar 

  4. R. Yimnirun, R. Wongmaneerung, S. Wongsaenmai, A. Ngamjarurojana, S. Ananta, Y. Laosiritaworn, Appl. Phys. Lett. 90, 112908 (2007)

    Article  Google Scholar 

  5. R. Yimnirun, Y. Laosiritaworn, S. Wongsaenmai, S. Ananta, Appl. Phys. Lett. 89, 162901 (2006)

    Article  Google Scholar 

  6. X. Chen, F. Cao, H. Zhang, G. Yu, G. Wang, X. Dong, Y. Gu, H. He, Y. Liu, J. Am. Ceram. Soc. 95, 1163 (2012)

    Article  CAS  Google Scholar 

  7. Y.Y. Guo, T. Wei, Q.Y. He, J.-M. Liu, J. Phys. 21, 485901 (2009)

    CAS  Google Scholar 

  8. X. Chen, X. Dong, Z. Zhou, J. Wang, F. Cao, G. Wang, H. Zhang, J. Appl. Phys. 114, 244101 (2013)

    Article  Google Scholar 

  9. S. Zhao, G. Li, A. Ding, T. Wang, Q. Yin, J. Phys. D 39, 2277 (2006)

    Article  CAS  Google Scholar 

  10. O. Elkechai, M. Manier, J.P. Mercurio, Phys. Stat. Sol. (a) 157, 499 (1996)

    Article  Google Scholar 

  11. Y.-R. Zhang, J.-F. Li, B.-P. Zhang, J. Am. Ceram. Soc. 91, 2716 (2008)

    Article  CAS  Google Scholar 

  12. T. Karthik, S. Asthana, Mater. Lett. 190, 273 (2017)

    Article  CAS  Google Scholar 

  13. J. Kreisel, A. M. Glazer, G. Jones, P. A. Thomas, L. Abello, and G. Lucazeau, 14 (n.d.).

  14. H.H. Wieder, J. Appl. Phys. 31, 180 (1960)

    Article  CAS  Google Scholar 

  15. J. Schultheiß, L. Liu, H. Kungl, M. Weber, L.K. Venkataraman, S. Checchia, D. Damjanovic, J.E. Daniels, J. Koruza, Acta Mater. 157, 355 (2018)

    Article  Google Scholar 

  16. D. Damjanovic, Rep. Prog. Phys. 61, 1267 (1998)

    Article  CAS  Google Scholar 

  17. K. Banerjee, S. Asthana, J. Materiomics 8, 918 (2022)

    Article  Google Scholar 

  18. X. Qiao, D. Wu, F. Zhang, M. Niu, B. Chen, X. Zhao, P. Liang, L. Wei, X. Chao, Z. Yang, J. Eur. Ceram. Soc. 39, 4778 (2019)

    Article  CAS  Google Scholar 

  19. R.A. Malik, A. Hussain, A. Maqbool, A. Zaman, C.-W. Ahn, J.U. Rahman, T.-K. Song, W.-J. Kim, M.-H. Kim, J. Am. Ceram. Soc. 98, 3842 (2015)

    Article  CAS  Google Scholar 

  20. J. Hao, Z. Xu, R. Chu, W. Li, D. Juan, F. Peng, Solid State Commun. 204, 19 (2015)

    Article  CAS  Google Scholar 

  21. S. Gupta, S. Priya, Appl. Phys. Lett. 98, 242906 (2011)

    Article  Google Scholar 

  22. F. Xu, S. Trolier-McKinstry, W. Ren, B. Xu, Z.-L. **e, K.J. Hemker, J. Appl. Phys. 89, 1336 (2001)

    Article  CAS  Google Scholar 

  23. C.-M. Wang, K. Lau, Q. Wang, RSC Adv. 6, 30148 (2016)

    Article  CAS  Google Scholar 

  24. P. Zhou, Z. Mei, C. Yang, Y. Qi, K. Liang, Z. Ma, T. Zhang, J. Mater. Sci. 27, 7755 (2016)

    CAS  Google Scholar 

  25. J. Wang, C. Zhou, Q. Li, W. Zeng, J. Xu, G. Chen, C. Yuan, G. Rao, Mater. Res. Bull. 109, 134 (2019)

    Article  CAS  Google Scholar 

  26. Z. Li, W. Peng, C. Zhou, Q. Li, L. Yang, J. Xu, G. Chen, C. Yuan, G. Rao, Ceram. Int. 44, 14439 (2018)

    Article  CAS  Google Scholar 

  27. T. Karthik, S. Asthana, J. Phys. D 50, 385601 (2017)

    Article  Google Scholar 

  28. P. Peng, H. Nie, Z. Liu, G. Wang, X. Dong, Y. Zhang, C. Duan, X. Tang, J. Appl. Phys. 122, 064102 (2017)

    Article  Google Scholar 

  29. D. Berlincourt, H.H.A. Krueger, J. Appl. Phys. 30, 1804 (1959)

    Article  CAS  Google Scholar 

  30. D. Viehland, Y.-H. Chen, J. Appl. Phys. 88, 6696 (2000)

    Article  CAS  Google Scholar 

  31. Q. Tan, D. Viehland, Phys. Rev. B 53, 14103 (1996)

    Article  CAS  Google Scholar 

  32. Y. Li, N. Sun, J. Du, X. Li, X. Hao, J. Mater. Chem. C 7, 7692 (2019)

    Article  CAS  Google Scholar 

  33. H. Qi, R. Zuo, J. Mater. Chem. A 7, 3971 (2019)

    Article  CAS  Google Scholar 

  34. X. Liu, Y. Li, X. Hao, J. Mater. Chem. A 7, 11858 (2019)

    Article  CAS  Google Scholar 

  35. W. Kleemann, J. Mater. Sci. 41, 129 (2006)

    Article  CAS  Google Scholar 

  36. H. Guo, X. Liu, F. Xue, L.-Q. Chen, W. Hong, X. Tan, Phys. Rev. B 93, 174114 (2016)

    Article  Google Scholar 

  37. C. Zhou, Q. Li, J. Xu, L. Yang, W. Zeng, C. Yuan, G. Chen, J. Am. Ceram. Soc. 101, 1554 (2018)

    Article  CAS  Google Scholar 

  38. X. Su, R. Yin, Y. Hou, J. Li, J. Li, S. Qin, Y. Su, L. Qiao, C. Liu, Y. Bai, J. Eur. Ceram. Soc. 42, 4917 (2022)

    Article  CAS  Google Scholar 

  39. Y. Ehara, N. Novak, S. Yasui, M. Itoh, K.G. Webber, Appl. Phys. Lett. 107, 262903 (2015)

    Article  Google Scholar 

  40. A. Khesro, D. Wang, F. Hussain, D.C. Sinclair, A. Feteira, I.M. Reaney, Appl. Phys. Lett. 109, 142907 (2016)

    Article  Google Scholar 

  41. L. **, F. Li, S. Zhang, J. Am. Ceram. Soc. 97, 1 (2014)

    Article  CAS  Google Scholar 

  42. H. Yan, F. Inam, G. Viola, H. Ning, H. Zhang, Q. Jiang, T. Zeng, Z. Gao, M.J. Reece, J. Adv. Dielect. 01, 107 (2011)

    Article  CAS  Google Scholar 

  43. K. Banerjee, S. Asthana, Mater. Lett. 304, 130577 (2021)

    Article  CAS  Google Scholar 

  44. K. Banerjee, S. Asthana, P.K. Kumari, M.K. Niranjan, J. Phys. D 51, 115501 (2018)

    Article  Google Scholar 

  45. M.K. Niranjan, T. Karthik, S. Asthana, J. Pan, U.V. Waghmare, J. Appl. Phys. 113, 194106 (2013)

    Article  Google Scholar 

  46. S.Y. Cho, E.-Y. Kim, S.Y. Kim, T.L. Pham, J.K. Han, D.S. Song, H.-K. Jung, J.-S. Lee, K.-S. An, J. Lim, S.D. Bu, Energies 13, 455 (2020)

    Article  CAS  Google Scholar 

  47. R.K. Sahu, S. Asthana, J. Alloys Compd. 929, 167340 (2022)

    Article  CAS  Google Scholar 

  48. X. **a, C. Li, J. Zeng, L. Zheng, G. Li, J. Am. Ceram. Soc. 103, 2694 (2020)

    Article  CAS  Google Scholar 

  49. R. Blinc, V.V. Laguta, B. Zalar, J. Banys, J. Mater. Sci. 41, 27 (2006)

    Article  CAS  Google Scholar 

  50. J. Zang, M. Li, D.C. Sinclair, W. Jo, J. Rödel, J. Am. Ceram. Soc. 97, 1523 (2014)

    Article  CAS  Google Scholar 

  51. Q. Xu, M.T. Lanagan, W. Luo, L. Zhang, J. **e, H. Hao, M. Cao, Z. Yao, H. Liu, J. Eur. Ceram. Soc. 36, 2469 (2016)

    Article  CAS  Google Scholar 

  52. B. Hu, M. Zhu, J. Guo, Y. Wang, M. Zheng, Y. Hou, J. Am. Ceram. Soc. 99, 1637 (2016)

    Article  CAS  Google Scholar 

  53. J. Yang, Y. Hou, C. Wang, M. Zhu, H. Yan, Appl. Phys. Lett. 91, 023118 (2007)

    Article  Google Scholar 

  54. J. Shi, W. Tian, X. Liu, H. Fan, J. Am. Ceram. Soc. 100, 1080 (2017)

    Article  CAS  Google Scholar 

  55. X.-J. He, Y.-C. Zhang, L. Li, J. Zhang, Z.-B. Gu, S.-T. Zhang, Appl. Phys. Lett. 120, 182902 (2022)

    Article  CAS  Google Scholar 

  56. X. Zhu, M. Fu, M.C. Stennett, P.M. Vilarinho, I. Levin, C.A. Randall, J. Gardner, F.D. Morrison, I.M. Reaney, Chem. Mater. 27, 3250 (2015)

    Article  CAS  Google Scholar 

  57. J. Wu, A. Mahajan, L. Riekehr, H. Zhang, B. Yang, N. Meng, Z. Zhang, H. Yan, Nano Energy 50, 723 (2018)

    Article  CAS  Google Scholar 

  58. J. Wu, H. Zhang, C.-H. Huang, C.-W. Tseng, N. Meng, V. Koval, Y.-C. Chou, Z. Zhang, H. Yan, Nano Energy 76, 105037 (2020)

    Article  CAS  Google Scholar 

  59. G. Dong, H. Fan, L. Liu, P. Ren, Z. Cheng, S. Zhang, J. Materiomics 7, 593 (2021)

    Article  Google Scholar 

  60. F. Li, J. Zhai, B. Shen, H. Zeng, X. Jian, S. Lu, J. Alloys Compd. 803, 185 (2019)

    Article  CAS  Google Scholar 

  61. Q.-N. Li, C.-R. Zhou, J.-W. Xu, L. Yang, X. Zhang, W.-D. Zeng, C.-L. Yuan, G.-H. Chen, G.-H. Rao, J. Electron. Mater. 45, 5146 (2016)

    Article  CAS  Google Scholar 

  62. F. Li, J. Zhai, B. Shen, X. Liu, H. Zeng, Mater. Res. Lett. 6, 345 (2018)

    Article  CAS  Google Scholar 

  63. K. Yao, C. Zhou, J. Wang, Q. Li, C. Yuan, J. Xu, G. Chen, G. Rao, J. Alloys Compd. 883, 160855 (2021)

    Article  CAS  Google Scholar 

  64. W. Ma, Y. Zhu, M.A. Marwat, P. Fan, B. **e, D. Salamon, Z.-G. Ye, H. Zhang, J. Mater. Chem. C 7, 281 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Author SA acknowledges the UGC-DAE (CRS/2021-22/03/553), and SERB (CRG/2020/001509), India to carry out this work. Author RS acknowledges the Ministry of Human Resource and Development (MHRD), Government of India, for providing financial assistance.

Funding

Funding was provided by SERB (CRG/ 2020/001509), UGC-DAE Consortium for Scientific Research, University Grants Commission (CRS/2021-22/03/553).

Author information

Authors and Affiliations

Authors

Contributions

RKS: synthesis, investigation, formal analysis, writing original draft; KB: visualization, writing review and editing; SA: supervision, resource, project administrator.

Corresponding author

Correspondence to Saket Asthana.

Ethics declarations

Conflict of interest

The authors do not have any competing interests.

Ethical approval

The manuscript reflects the authors own research and analysis in a truthful and complete manner. We expressly declare that all ethical rules are followed during the experiments and the process of converting the work into a manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahu, R.K., Banerjee, K. & Asthana, S. Ergodic-nonergodic relaxor behavior, recoverable energy storage density, and dynamic hysteresis scaling in NKBT ferroelectrics. J Mater Sci: Mater Electron 34, 972 (2023). https://doi.org/10.1007/s10854-023-10430-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10430-w

Navigation