Log in

Fabrication of porous LLZO solid electrolyte based on modified kapok fiber

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

As one of the most promising solid electrolytes, Li7La3Zr2O12(LLZO) has received great attention in the field of all solid-state lithium-ion batteries. However, LLZO, as a solid material, has far less contact with the electrode than original liquid electrolyte with wettable properties in practical applications. In this study, porous LLZO solid electrolytes were fabricated by both mechanical and dispersive mixing methods with modified kapok fibers as pore-forming agents. The results show that the pores of LLZO prepared by dispersive mixing are more homogeneous than that prepared by mechanical mixing, and the ionic conductivity of LLZO fabricated by dispersive mixing remains in the same order of magnitude as the ionic conductivity of the original LLZO solid electrolyte. At the same time, the formation of ordered pore channels for porous LLZO is conducive to increasing the contact area between the solid electrolyte and the electrode material, which lays a foundation for reducing the impedance of solid electrolyte.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. J.B. Bates, N.J. Dudney, B. Neudecker, A. Ueda, C.D. Evans, Thin-film lithium and lithium-ion batteries. Solid State Ion. 135, 33–45 (2000). https://doi.org/10.1016/s0167-2738(00)00327-1

    Article  CAS  Google Scholar 

  2. V. Thangadurai, S. Narayanan, D. Pinzaru, Garnet-type solid-state fast li ion conductors for li batteries: critical review. Chem. Soc. Rev. 43, 4714–4727 (2014). https://doi.org/10.1039/c4cs00020j

    Article  CAS  Google Scholar 

  3. K. Xu, Electrolytes and interphases in li-ion batteries and beyond. Chem. Rev. 114, 11503–11618 (2014). https://doi.org/10.1021/cr500003w

    Article  CAS  Google Scholar 

  4. R. Chen, W. Qu, X. Guo, L. Li, F. Wu, The pursuit of solid-state electrolytes for lithium batteries: from comprehensive insight to emerging horizons. Mater. Horiz. 3, 487–516 (2016). https://doi.org/10.1039/c6mh00218h

    Article  CAS  Google Scholar 

  5. J.F. Wu, W.K. Pang, V.K. Peterson, L. Wei, X. Guo, Garnet-type fast li-ion conductors with high ionic conductivities for all-solid-state batteries. ACS Appl. Mater. Interfaces 9, 12461–12468 (2017). https://doi.org/10.1021/acsami.7b00614

    Article  CAS  Google Scholar 

  6. C. Wang, K. Fu, S.P. Kammampata, D.W. McOwen, A.J. Samson, L. Zhang, G.T. Hitz, A.M. Nolan, E.D. Wachsman, Y. Mo, V. Thangadurai, L. Hu, Garnet-type solid-state electrolytes: materials, interfaces, and batteries. Chem. Rev. 120, 4257–4300 (2020). https://doi.org/10.1021/acs.chemrev.9b00427

    Article  CAS  Google Scholar 

  7. H. Xu, H.L. Du, L. Kang, Q.D. Cheng, D.N. Feng, S.Y. **a, Constructing straight pores and improving mechanical properties of gangue-based porous ceramics. J. Renew. Mater. 9, 2129–2141 (2021). https://doi.org/10.32604/jrm.2021.016090

    Article  CAS  Google Scholar 

  8. Q. Wang, K. Xue, P. Fu, F. Du, Z. Lin, Z. Chen, S. Wang, G. Wang, Tunable dielectric properties of porous znal2o4 ceramics for wave-transmitting devices. J. Mater. Sci. Mater. Electron. 30, 6475–6481 (2019). https://doi.org/10.1007/s10854-019-00952-7

    Article  CAS  Google Scholar 

  9. M. Aggarwal, M. Kumar, R. Syal, V.P. Singh, A.K. Singh, S. Dhiman, S. Kumar, Enhanced pyroelectric figure of merits in sr and zr co-doped porous batio3 ceramics. J. Mater. Sci. Mater. Electron. 31, 2337–2346 (2020). https://doi.org/10.1007/s10854-019-02766-z

    Article  CAS  Google Scholar 

  10. J. Bai, X. Yang, Y. Shi, S. Xu, J. Yang, Fabrication of directional sic porous ceramics using fe2o3 as pore-forming agent. Mater. Lett. 78, 192–194 (2012). https://doi.org/10.1016/j.matlet.2012.03.046

    Article  CAS  Google Scholar 

  11. A. Benhammou, Y. El Hafiane, A. Abourriche, Y. Abouliatim, L. Nibou, A. Yaacoubi, N. Tessier-Doyen, A. Smith, B. Tanouti, Effects of oil shale addition and sintering cycle on the microstructure and mechanical properties of porous cordierite-ceramic. Ceram. Int. 40, 8937–8944 (2014). https://doi.org/10.1016/j.ceramint.2014.02.105

    Article  CAS  Google Scholar 

  12. Y.C. Yabansu, V. Rehn, J. Hotzer, B. Nestler, S.R. Kalidindi, Application of Gaussian process autoregressive models for capturing the time evolution of microstructure statistics from phase-field simulations for sintering of polycrystalline ceramics. Modell. Simul. Mater. Sci. Eng. (2019). https://doi.org/10.1088/1361-651X/ab413e

    Article  Google Scholar 

  13. Y. Zhang, X. Xu, Predicting mechanical performance of starch-based foam materials. J. Cell. Plast. 58, 505–514 (2022). https://doi.org/10.1177/0021955x211062638

    Article  CAS  Google Scholar 

  14. Y. Zhang, X.J. Xu, Machine learning properties of electrolyte additives: a focus on redox potentials. Ind. Eng. Chem. Res. 60, 343–354 (2021). https://doi.org/10.1021/acs.iecr.0c05055

    Article  CAS  Google Scholar 

  15. Y. Zhang, X.J. Xu, Machine learning modeling of lattice constants for half-heusler alloys. AIP Adv. 10(1063/5), 0002448 (2020)

    Google Scholar 

  16. Y. Zhang, X. Xu, Machine learning optical band gaps of doped-zno films. Optik (2020). https://doi.org/10.1016/j.ijleo.2020.164808

    Article  Google Scholar 

  17. Y. Zhang, X. Xu, Machine learning band gaps of doped-tio2 photocatalysts from structural and morphological parameters. Acs Omega 5, 15344–15352 (2020). https://doi.org/10.1021/acsomega.0c01438

    Article  CAS  Google Scholar 

  18. C. Zollfrank, R. Kladny, H. Sieber, P. Greil, Biomorphous sioc/c-ceramic composites from chemically modified wood templates. J. Eur. Ceram. Soc. 24, 479–487 (2004)

    Article  CAS  Google Scholar 

  19. D. Fengel, M. Przyklenk, Studies on kapok.2. Chemical investigation. Holzforschung 40, 325–330 (1986)

    Article  CAS  Google Scholar 

  20. P.P. Zhang, D.S. Tong, C.X. Lin, H.M. Yang, Z.K. Zhong, W.H. Yu, H. Wang, C.H. Zhou, Effects of acid treatments on bamboo cellulose nanocrystals. Asia-Pac J. Chem. Eng. 9, 686–695 (2014). https://doi.org/10.1002/apj.1812

    Article  CAS  Google Scholar 

  21. S.L. Sun, S.N. Sun, J.L. Wen, X.M. Zhang, F. Peng, R.C. Sun, Assessment of integrated process based on hydrothermal and alkaline treatments for enzymatic saccharification of sweet sorghum stems. Bioresour. Technol. 175, 473–479 (2015). https://doi.org/10.1016/j.biortech.2014.10.111

    Article  CAS  Google Scholar 

  22. Y. Liu, J. Wang, Y. Zheng, A. Wang, Adsorption of methylene blue by kapok fiber treated by sodium chlorite optimized with response surface methodology. Chem. Eng. J. 184, 248–255 (2012). https://doi.org/10.1016/j.cej.2012.01.049

    Article  CAS  Google Scholar 

  23. J. Biggemann, M. Stumpf, T. Fey, Porous alumina ceramics with multimodal pore size distributions. Materials (2021). https://doi.org/10.3390/ma14123294

    Article  Google Scholar 

  24. H. Yang, R. Yan, H. Chen, D.H. Lee, C. Zheng, Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86, 1781–1788 (2007). https://doi.org/10.1016/j.fuel.2006.12.013

    Article  CAS  Google Scholar 

  25. M.A. Abdullah, A.U. Rahmah, Z. Man, Physicochemical and sorption characteristics of malaysian ceiba pentandra (l.) gaertn. As a natural oil sorbent. J. Hazard. Mater. 177, 683–691 (2010). https://doi.org/10.1016/j.jhazmat.2009.12.085

    Article  CAS  Google Scholar 

  26. S.M.L. Rosa, N. Rehman, M.I.G. de Miranda, S.M.B. Nachtigall, C.I.D. Bica, Chlorine-free extraction of cellulose from rice husk and whisker isolation. Carbohydr. Polym. 87, 1131–1138 (2012). https://doi.org/10.1016/j.carbpol.2011.08.084

    Article  CAS  Google Scholar 

  27. Y. Lang, L. Zhao, X. Dai, C.-A. Wang, Effect of alumina fiber content on pore structure and properties of porous ceramics. Int. J. Appl. Ceram. Technol. 16, 814–819 (2019). https://doi.org/10.1111/ijac.13123

    Article  CAS  Google Scholar 

  28. W. **a, B. Xu, H. Duan, Y. Guo, H. Kang, H. Li, H. Liu, Ionic conductivity and air stability of al-doped li7la3zr2o12 sintered in alumina and pt crucibles. ACS Appl. Mater. Interfaces 8, 5335–5342 (2016). https://doi.org/10.1021/acsami.5b12186

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Natural Science Foundation of Shanxi Province China (Grant No. 201901D111138) and Shanxi Scholarship Council of China (HGKY2019069).

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed to the completion of this paper. The details are as follows: (1) LH main contributions included research designer, experiment implementation, data processing and analysis, and paper writing. (2) XY contributions included research idea and designer, paper revision, and providing funding and platforms for research. (3) HW and ZC contributions were to revise the article. (4) HJ and LZ contributions were to assist the first author in the testing of the electrochemical impedance.

Corresponding author

Correspondence to **aofeng Yang.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, L., Yang, X., Wang, H. et al. Fabrication of porous LLZO solid electrolyte based on modified kapok fiber. J Mater Sci: Mater Electron 34, 956 (2023). https://doi.org/10.1007/s10854-023-10404-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10404-y

Navigation