Log in

Rietveld refinement combined with first-principles study of Zn and Al–Zn doped CdO thin films and their structural, optical and electrical characterisations

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Un-doped, Zn-doped, and Al–Zn co-doped CdO thin films were deposited onto glass substrates at 350 °C by spray pyrolysis. X-ray diffraction (XRD) analysis was conducted to investigate the structural properties of the films. The XRD patterns confirmed that all the films crystallize in a cubic structure and that the addition of Zn and Al did not alter the CdO crystal structure. Energy-dispersive X-ray spectroscopy analysis further confirmed the successful incorporation of Zn and Al into the CdO films. Theoretical calculations based on first-principles were performed, and crystallographic information files (CIF) were obtained for optimized theoretical supercells in space group Pm3-m. The CIF files were used as input for experimental XRD spectra Rietveld refinement, to determine the Wyckoff positions of the dopants and their occupation rates. The optical properties of the films were characterized using transmittance measurements in the wavelength range of 300–1700 nm. The optical data indicated an increase in the average transmittance from 60 to 70% within the wavelength range of 600–1700 nm upon Al–Zn co-do**. The estimated direct optical band gap of the un-doped, doped, and co-doped CdO thin films is varied between 2.41 and 2.50 eV. All the samples exhibited n-type conductivity with low electrical resistivity of about 1.32 × 10–4 Ω⋅cm. Co-doped CdO thin films with 1% Al and 3% Zn exhibited higher carrier concentration (4.39 × 10+20 cm−3) than the other samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author on request.

References

  1. L.L. Pan, G.Y. Li, J.S. Lian, Structural, optical and electrical properties of cerium and gadolinium doped CdO thin films. Appl. Surf. Sci. 274, 365 (2013). https://doi.org/10.1016/j.apsusc.2013.03.066

    Article  CAS  Google Scholar 

  2. G. Murtaza, B. Amin, S. Arif, M. Maqbool, I. Ahmad, A. Afaq, S. Nazir, M. Imran, M. Haneef, Structural, electronic and optical properties of CaxCd1−xO and its conversion from semimetal to wide bandgap semiconductor. Comput. Mater. Sci. 58, 71 (2012). https://doi.org/10.1016/j.commatsci.2012.01.020

    Article  CAS  Google Scholar 

  3. A.H. Yahi, A. Bouzidi, R. Miloua, M. Medles, J.-F. Blach, The relationship between processing and structural, optical, electrical properties of spray pyrolysed SnO2 thin films prepared for different deposition times. Optik 196, 163 (2019). https://doi.org/10.1016/j.ijleo.2019.163198

    Article  CAS  Google Scholar 

  4. A. Nakrela, N. Benramdane, A. Bouzidi, Z. Kebbab, M. Medles, C. Mathieu, Site location of Al-dopant in ZnO lattice by exploiting the structural and optical characterisation of ZnO: Al thin films. Results Phys. 6, 133 (2016). https://doi.org/10.1016/j.rinp.2016.01.010

    Article  Google Scholar 

  5. S. Ray, R. Banerjee, N. Basu, A.K. Batabyal, A.K. Barua, Properties of tin doped indium oxide thin films prepared by magnetron sputtering. J. Appl. Phys. 54, 3497 (1983). https://doi.org/10.1063/1.332415

    Article  CAS  Google Scholar 

  6. A.J. Varkey, A.F. Fort, Transparent conducting cadmium oxide thin films prepared by a solution growth technique. Thin Solid Films 239, 211 (1994). https://doi.org/10.1016/0040-6090(94)90853-2

    Article  CAS  Google Scholar 

  7. H. Güney, D. İskenderoğlu, The effect of Zn do** on CdO thin films grown by SILAR method at room temperature. Physica B 552, 119 (2019). https://doi.org/10.1016/j.physb.2018.09.045

    Article  CAS  Google Scholar 

  8. A.A. Dakhel, Bandgap narrowing in CdO doped with europium. Opt. Mater. 31, 691 (2009). https://doi.org/10.1016/j.optmat.2008.08.001

    Article  CAS  Google Scholar 

  9. M. Anitha, K. Saravanakumar, N. Anitha, L. Amalraj, Influence of a novel co-do** (Zn+ F) on the physical properties of nano structured (1 1 1) oriented CdO thin films applicable for window layer of solar cell. Appl. Surf. Sci. 443, 55 (2018). https://doi.org/10.1016/j.apsusc.2018.02.231

    Article  CAS  Google Scholar 

  10. A.A. Dakhel, Effect of thallium do** on the electrical and optical properties of CdO thin films. Physica Status Solidi (a) 205, 2704 (2008). https://doi.org/10.1002/pssa.200723472

    Article  CAS  Google Scholar 

  11. P. Velusamy, R.R. Babu, K. Ramamurthi, M.S. Dahlem, E. Elangovan, Highly transparent conducting cerium incorporated CdO thin films deposited by a spray pyrolytic technique. RSC Adv. 5, 102741 (2015). https://doi.org/10.1039/c5ra15262c

    Article  CAS  Google Scholar 

  12. M.A. Mahdi, S.R. Yousefi, L.S. Jasim, M. Salavati-Niasari, Green synthesis of DyBa2Fe3O7. 988/DyFeO3 nanocomposites using almond extract with dual eco-friendly applications: photocatalytic and antibacterial activities. Int. J. Hydrogen Energy 47, 14319 (2022). https://doi.org/10.1016/j.ijhydene.2022.02.175

    Article  CAS  Google Scholar 

  13. S.R. Yousefi, M. Ghanbari, O. Amiri, Z. Marzhoseyni, P. Mehdizadeh, M. Hajizadeh-Oghaz, M. Salavati-Niasari, Dy2BaCuO5/Ba4DyCu3O9.09 S-scheme heterojunction nanocomposite with enhanced photocatalytic and antibacterial activities. J. Am. Ceram. Soc. 104, 2952 (2021). https://doi.org/10.1111/jace.17696

    Article  CAS  Google Scholar 

  14. S.R. Yousefi, H.A. Alshamsi, O. Amiri, M. Salavati-Niasari, Synthesis, characterization and application of Co/Co3O4 nanocomposites as an effective photocatalyst for discoloration of organic dye contaminants in wastewater and antibacterial properties. J. Mol. Liq. 337, 116405 (2021). https://doi.org/10.1016/j.molliq.2021.116405

    Article  CAS  Google Scholar 

  15. S.R. Yousefi, A. Sobhani, H.A. Alshamsi, M. Salavati-Niasari, Green sonochemical synthesis of BaDy2 NiO5/Dy2 O3 and BaDy2 NiO5/NiO nanocomposites in the presence of core almond as a cap** agent and their application as photocatalysts for the removal of organic dyes in water. RSC Adv. 11, 11500 (2021). https://doi.org/10.1039/D0RA10288A

    Article  CAS  Google Scholar 

  16. S.R. Yousefi, M. Masjedi-Arani, M.S. Morassaei, M. Salavati-Niasari, H. Moayedi, Hydrothermal synthesis of DyMn2O5/Ba3Mn2O8 nanocomposite as a potential hydrogen storage material. Int. J. Hydrogen Energy 44, 24005 (2019). https://doi.org/10.1016/j.ijhydene.2019.07.113

    Article  CAS  Google Scholar 

  17. S.R. Yousefi, O. Amiri, M. Salavati-Niasari, Control sonochemical parameter to prepare pure Zn0.35Fe2.65O4 nanostructures and study their photocatalytic activity. Ultrason. Sonochem. 58, 104619 (2019). https://doi.org/10.1016/j.ultsonch.2019.104619

    Article  CAS  Google Scholar 

  18. S.R. Yousefi, A. Sobhani, M. Salavati-Niasari, A new nanocomposite superionic system (CdHgI4/HgI2): synthesis, characterization and experimental investigation. Adv. Powder Technol. 28, 1258 (2017). https://doi.org/10.1016/j.apt.2017.02.013

    Article  CAS  Google Scholar 

  19. S.R. Yousefi, D. Ghanbari, M. Salavati-Niasari, M. Hassanpour, Photo-degradation of organic dyes: simple chemical synthesis of Ni (OH)2 nanoparticles, Ni/Ni (OH)2 and Ni/NiO magnetic nanocomposites. J. Mater. Sci.: Mater. Electron. 27, 1244 (2016). https://doi.org/10.1007/s10854-015-3882-6

    Article  CAS  Google Scholar 

  20. S.R. Yousefi, D. Ghanbari, and M. Salavati-Niasari. (2016) Hydrothermal synthesis of nickel hydroxide nanostructures and flame retardant poly vinyl alcohol and cellulose acetate nanocomposites. Doi:https://doi.org/10.7508/jns.2016.01.00*

  21. M. Yan, M. Lane, C.R. Kannewurf, R.P.H. Chang, Highly conductive epitaxial CdO thin films prepared by pulsed laser deposition. Appl. Phys. Lett. 78, 2342 (2001). https://doi.org/10.1063/1.1365410

    Article  CAS  Google Scholar 

  22. A.A. Dakhel, F.Z. Henari, Optical characterization of thermally evaporated thin CdO films. Cryst. Res. Technol.: J. Exp. Ind. Crystallogr. 38, 979 (2003). https://doi.org/10.1002/crat.200310124

    Article  CAS  Google Scholar 

  23. T.K. Subramanyam, S. Uthanna, B.S. Naidu, Preparation and characterization of CdO films deposited by dc magnetron reactive sputtering. Mater. Lett. 35, 214 (1998). https://doi.org/10.1016/S0167-577X(97)00246-2

    Article  CAS  Google Scholar 

  24. D.M. Carballeda-Galicia, R. Castanedo-Perez, O. Jimenez-Sandoval, S. Jimenez-Sandoval, G. Torres-Delgado, C.I. Zuniga-Romero, High transmittance CdO thin films obtained by the sol–gel method. Thin Solid Films 371, 105 (2000). https://doi.org/10.1016/S0040-6090(00)00987-1

    Article  CAS  Google Scholar 

  25. S. **, Y. Yang, J.E. Medvedeva, J.R. Ireland, A.W. Metz, J. Ni, C.R. Kannewurf, A.J. Freeman, T.J. Marks, Dopant ion size and electronic structure effects on transparent conducting oxides. Sc-doped CdO thin films grown by MOCVD. J. Am. Chem. Soc. 126, 13787 (2004). https://doi.org/10.1021/ja0467925

    Article  CAS  Google Scholar 

  26. A.M. Bazargan, S.M.A. Fateminia, M.E. Ganji, M.A. Bahrevar, Electrospinning preparation and characterization of cadmium oxide nanofibers. Chem. Eng. J. 155, 523 (2009). https://doi.org/10.1016/j.cej.2009.08.004

    Article  CAS  Google Scholar 

  27. K. Salim, M. Medles, A. Nakrela, R. Miloua, A. Bouzidi, R. Desfeux, Enhancement of optical and electrical properties of spray pyrolysed ZnO thin films obtained from nitrate chemical by Al–Sn co-do**. Optik 210, 164504 (2020). https://doi.org/10.1016/j.ijleo.2020.164504

    Article  CAS  Google Scholar 

  28. K. Usharani, A.R. Balu, Structural, optical, and electrical properties of Zn-doped CdO thin films fabricated by a simplified spray pyrolysis technique. Acta Metall. Sin. (English Letters) 28, 64 (2015). https://doi.org/10.1007/s40195-014-0168-6

    Article  CAS  Google Scholar 

  29. M.K.R. Khan, M.A. Rahman, M. Shahjahan, M.M. Rahman, M.A. Hakim, D.K. Saha, J.U. Khan, Effect of Al-do** on optical and electrical properties of spray pyrolytic nano-crystalline CdO thin films. Curr. Appl. Phys. 10, 790 (2010). https://doi.org/10.1016/j.cap.2009.09.016

    Article  Google Scholar 

  30. E.A. Syukkalova, A.V. Sadetskaya, N.D. Demidova, N.P. Bobrysheva, M.G. Osmolowsky, M.A. Voznesenskiy, O.M. Osmolovskaya, The effect of reaction medium and hydrothermal synthesis conditions on morphological parameters and thermal behavior of calcium phosphate nanoparticles. Ceram. Int. 47, 2809 (2021). https://doi.org/10.1016/j.ceramint.2020.09.135

    Article  CAS  Google Scholar 

  31. B. Małecka, Thermal decomposition of Cd (CH3COO)2·2H2O studied by a coupled TG-DTA-MS method. J. Therm. Anal. Calorim. 78, 535 (2004). https://doi.org/10.1023/b:jtan.0000046117.25037.5a

    Article  Google Scholar 

  32. P. Melnikov, V.A. Nascimento, I.V. Arkhangelsky, L.Z. Zanoni Consolo, Thermal decomposition mechanism of aluminum nitrate octahydrate and characterization of intermediate products by the technique of computerized modeling. J. Therm. Anal. Calorim. 111, 543 (2013). https://doi.org/10.1007/s10973-012-2566-1

    Article  CAS  Google Scholar 

  33. C.S. Prajapati, P.P. Sahay, Growth, structure and optical characterization of Al-doped ZnO nanoparticle thin films. Cryst. Res. Technol. 46, 1086 (2011). https://doi.org/10.1002/crat.201100192

    Article  CAS  Google Scholar 

  34. S.J. Helen, S. Devadason, T. Mahalingam, Improved physical properties of spray pyrolysed Al: CdO nanocrystalline thin films. J. Mater. Sci.: Mater. Electron. 27, 4426 (2016). https://doi.org/10.1007/s10854-016-4313-z

    Article  CAS  Google Scholar 

  35. A. Kozak, K. Wieczorek-Ciurowa, A. Kozak, The thermal transformations in Zn (NO3)2–H2O (1:6) system. J. Therm. Anal. Calorim. 74, 497 (2003). https://doi.org/10.1023/b:jtan.0000005186.15474.be

    Article  CAS  Google Scholar 

  36. P. Atkins, J. De Paula, Physical chemistry for the life sciences (Oxford University Press, 2011)

    Google Scholar 

  37. R. Chang, Physical chemistry for the biosciences (University Science Books, 2005)

    Google Scholar 

  38. M.A.V.R. Da Silva, L.M.N.B.F. Santos, Standard molar enthalpies of formation of Ni (CH3COO)2, Ni (CH3COO)2·4.00 H2O, Cd (CH3COO)2, and Cd (CH3COO)2·2.00 H2O in the crystalline state. J. Chem. Thermodyn. 32, 1327 (2000). https://doi.org/10.1006/jcht.2000.0681

    Article  Google Scholar 

  39. K. Annamalai, K.P. Ishwar, A.J. Milind, Advanced thermodynamics engineering (CRC Press, 2011)

    Book  Google Scholar 

  40. C.L. Yaws, Chemical properties handbook (McGraw-Hill Education, 1999)

    Google Scholar 

  41. https://www.bruker.com/en/products-and-solutions/diffractometers-and-scattering-systems/x-ray-diffractometers/diffrac-suite-software/diffrac-eva.html

  42. DIFFRAC.TOPAS

  43. P. Blaha, K. Schwarz, G.K. Madsen, D. Kvasnicka, and J. Luitz. "wien2k." An augmented plane wave+ local orbitals program for calculating crystal properties 60 1 (2001).

  44. J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996). https://doi.org/10.1103/PhysRevLett.77.3865

    Article  CAS  Google Scholar 

  45. V.K. Gupta, A. Fakhri, S. Tahami, S. Agarwal, Zn doped CdO nanoparticles: structural, morphological, optical, photocatalytic and anti-bacterial properties. J. Colloid Interface Sci. 504, 164 (2017). https://doi.org/10.1016/j.jcis.2017.05.026

    Article  CAS  Google Scholar 

  46. P. Velusamy, R.R. Babu, K. Ramamurthi, E. Elangovan, J. Viegas, M. Sridharan, Gas sensing and opto-electronic properties of spray deposited cobalt doped CdO thin films. Sens. Actuators, B Chem. 255, 871 (2018). https://doi.org/10.1016/j.snb.2017.08.147

    Article  CAS  Google Scholar 

  47. A. Rahman, M. Aadil, S. Zulfiqar, I.A. Alsafari, M. Shahid, P.O. Agboola, M.F. Warsi, M.E.F. Abdel-Haliem, Fabrication of binary metal substituted CdO with superior aptitude for dye degradation and antibacterial activity. Ceram. Int. 47, 8082 (2021). https://doi.org/10.1016/j.ceramint.2020.11.163

    Article  CAS  Google Scholar 

  48. P. Scherrer, Bestimmung der Grösse und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen. Nachr. Ges. Wiss. Göttingen 26, 98 (1918)

    Google Scholar 

  49. J.I. Langford, A.J.C. Wilson, Scherrer after sixty years: a survey and some new results in the determination of crystallite size. J. Appl. Crystallogr. 11, 102 (1978). https://doi.org/10.1107/S0021889878012844

    Article  CAS  Google Scholar 

  50. V. Uvarov, I. Popov, Metrological characterization of X-ray diffraction methods for determination of crystallite size in nano-scale materials. Mater. Charact. 85, 111 (2013). https://doi.org/10.1016/j.matchar.2013.09.002

    Article  CAS  Google Scholar 

  51. H. Güney, The structural, morphological, optical and electrical properties of Pb doped CdO thin films grown by spray method. Vacuum 159, 261 (2019). https://doi.org/10.1016/j.vacuum.2018.10.053

    Article  CAS  Google Scholar 

  52. N. Manjula, A.R. Balu, Double do** (Mn+Cl) effects on the structural, morphological, photoluminescence, optoelectronic properties and antibacterial activity of CdO thin films. Optik 130, 464 (2017). https://doi.org/10.1016/j.ijleo.2016.10.074

    Article  CAS  Google Scholar 

  53. K. Sankarasubramanian, P. Soundarrajan, T. Logu, S. Kiruthika, K. Sethuraman, R.R. Babu, K. Ramamurthi, Influence of Mn do** on structural, optical and electrical properties of CdO thin films prepared by cost effective spray pyrolysis method. Mater. Sci. Semicond. Process. 26, 346 (2014). https://doi.org/10.1016/j.mssp.2014.05.005

    Article  CAS  Google Scholar 

  54. D.R. Lide, CRC handbook of chemistry and physics (CRC Press, 2004)

    Google Scholar 

  55. R. Sivasamy, P. Venugopal, E. Mosquera, Synthesis of Gd2O3/CdO composite by sol–gel method: structural, morphological, optical, electrochemical and magnetic studies. Vacuum 175, 109255 (2020). https://doi.org/10.1016/j.vacuum.2020.109255

    Article  CAS  Google Scholar 

  56. K. Momma, F. Izumi, VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272 (2011). https://doi.org/10.1107/S0021889811038970

    Article  CAS  Google Scholar 

  57. C. Freysoldt, B. Grabowski, T. Hickel, J. Neugebauer, First-principles calculations for point defects in solids. Rev. Mod. Phys. 86, 253 (2014). https://doi.org/10.1103/RevModPhys.86.253

    Article  Google Scholar 

  58. A. Le Bail, H. Duroy, J.L. Fourquet, Ab-initio structure determination of LiSbWO6 by X-ray powder diffraction. Mater. Res. Bull. 23, 447 (1988). https://doi.org/10.1016/0025-5408(88)90019-0

    Article  Google Scholar 

  59. A.A. Coelho, Whole-profile structure solution from powder diffraction data using simulated annealing. J. Appl. Crystallogr. 33, 899 (2000). https://doi.org/10.1107/S002188980000248X

    Article  CAS  Google Scholar 

  60. W.A. Dollase, Correction of intensities for preferred orientation in powder diffractometry: application of the March model. J. Appl. Crystallogr. 19, 267 (1986). https://doi.org/10.1107/S0021889886089458

    Article  CAS  Google Scholar 

  61. D.C. Palmer. "CrystalMaker, CrystalMaker Software Ltd., Begbroke, Oxfordshire, England, (2014). http://crystalmaker.com/about/index.html

  62. S. Narasimhan, S. De Gironcoli, Ab initio calculation of the thermal properties of Cu performance of the LDA and GGA. Phys. Rev. B 65, 064302 (2002). https://doi.org/10.1103/PhysRevB.65.064302

    Article  CAS  Google Scholar 

  63. M. Anitha, N. Anitha, K. Saravanakumar, I. Kulandaisamy, L. Amalraj, Effect of Zn do** on structural, morphological, optical and electrical properties of nebulized spray deposited CdO thin films. Appl. Phys. A 124, 1 (2018). https://doi.org/10.1007/s00339-018-1993-7

    Article  CAS  Google Scholar 

  64. H. Kim, C.M. Gilmore, J.S. Horwitz, A. Piqué, H. Murata, Transparent conducting aluminum-doped zinc oxide thin films for organic light-emitting devices. Appl. Phys. Lett. 76, 259 (2000). https://doi.org/10.1063/1.125740

    Article  CAS  Google Scholar 

  65. R. Kumaravel, K. Ramamurthi, V. Krishnakumar, Effect of indium do** in CdO thin films prepared by spray pyrolysis technique. J. Phys. Chem. Solids 71, 1545 (2010). https://doi.org/10.1016/j.jpcs.2010.07.021

    Article  CAS  Google Scholar 

  66. R. Miloua, Z. Kebbab, F. Chiker, K. Sahraoui, M. Khadraoui, N. Benramdane, Determination of layer thickness and optical constants of thin films by using a modified pattern search method. Opt. Lett. 37, 449 (2012). https://doi.org/10.1364/OL.37.000449

    Article  CAS  Google Scholar 

  67. M.N. Amroun, M. Khadraoui, Effect of substrate temperature on the properties of SnS2 thin films. Optik 184, 16 (2019). https://doi.org/10.1016/j.ijleo.2019.03.011

    Article  CAS  Google Scholar 

  68. S.H. Mohamed, N.M.A. Hadia, A.K. Diab, A.M. Abdel Hakeem, Synthesis, photoluminescence and optical constants evaluations of ultralong CdO nanowires prepared by vapor transport method. J. Alloys Compd. 609, 68 (2014). https://doi.org/10.1016/j.jallcom.2014.04.065

    Article  CAS  Google Scholar 

  69. T. Moss, The interpretation of the properties of indium antimonide. Proc. Phys. Soc. Sect. B 67, 775 (1954). https://doi.org/10.1088/0370-1301/67/10/306

    Article  Google Scholar 

  70. E. Burstein, Anomalous optical absorption limit in InSb. Phys. Rev. 93, 632 (1954). https://doi.org/10.1103/PhysRev.93.632

    Article  CAS  Google Scholar 

  71. A. Zaoui, M. Zaoui, S. Kacimi, A. Boukortt, B. Bouhafs, Stability and electronic properties of ZnxCd1−xO alloys. Mater. Chem. Phys. 120, 98 (2010). https://doi.org/10.1016/j.matchemphys.2009.10.027

    Article  CAS  Google Scholar 

  72. M.N. Amroun, M. Khadraoui, R. Miloua, Z. Kebbab, K. Sahraoui, Investigation on the structural, optical and electrical properties of mixed SnS2–CdS thin films. Optik 131, 152 (2017). https://doi.org/10.1016/j.ijleo.2016.11.005

    Article  CAS  Google Scholar 

  73. K. Usharani, A.R. Balu, Properties of spray deposited Zn, Mg incorporated CdO thin films. J. Mater. Sci.: Mater. Electron. 27, 2071 (2016). https://doi.org/10.1007/s10854-015-3993-0

    Article  CAS  Google Scholar 

  74. A.A. Ziabari, F.E. Ghodsi, G. Kiriakidis, Correlation between morphology and electro-optical properties of nanostructured CdO thin films: influence of Al do**. Surf. Coat. Technol. 213, 15 (2012). https://doi.org/10.1016/j.surfcoat.2012.10.003

    Article  CAS  Google Scholar 

  75. A.A. Ziabari, Exploring low, moderate and heavy Al do** impacts on microstructure and optical attributes of nanostructured cadmium oxide thin films. Superlattices Microstruct. 72, 172 (2014). https://doi.org/10.1016/j.spmi.2014.04.005

    Article  CAS  Google Scholar 

  76. A. Bagheri Khatibani, Z.A. Hallaj, S.M. Rozati, Some physical properties of CdO: F thin films prepared by spray pyrolysis. Eur. Phys. J. Plus 130, 254 (2015). https://doi.org/10.1140/epjp/i2015-15254-6

    Article  CAS  Google Scholar 

  77. D.M. Latif, I.H. Shallal, A.A. Shuihab, Synthesis and study of some physical properties of cadmium oxide CdO thin films. Energy Procedia 157, 611 (2019). https://doi.org/10.1016/j.egypro.2018.11.226

    Article  CAS  Google Scholar 

  78. R. Kumaravel, S. Menaka, S.R.M. Snega, K. Ramamurthi, K. Jeganathan, Electrical, optical and structural properties of aluminum doped cadmium oxide thin films prepared by spray pyrolysis technique. Mater. Chem. Phys. 122, 444 (2010). https://doi.org/10.1016/j.matchemphys.2010.03.022

    Article  CAS  Google Scholar 

  79. S. Vinoth, R.R. Isaac, P. Mohanraj, V. Ganesh, H. Algarni, S. AlFaify, Enhancement in optoelectronic properties of lanthanum co-doped CdO: Zn thin films for TCO applications. Superlattices Microstruct. 162, 107097 (2022). https://doi.org/10.1016/j.spmi.2021.107097

    Article  CAS  Google Scholar 

  80. B.J. Zheng, J.S. Lian, L. Zhao, Q. Jiang, Optical and electrical properties of Sn-doped CdO thin films obtained by pulse laser deposition. Vacuum 85, 861 (2011). https://doi.org/10.1016/j.vacuum.2011.01.002

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support of this work from the General Direction of Scientific Research and Technology (DGRSDT/MESRS) of Algeria, under PRFU Project No: A10N01UN220120200008. The Chevreul Institute is thanked for its help in the development of this work through the ARCHI-CM project supported by the “Ministère de l’Enseignement Supérieur de la Recherche et de l’Innovation”, the region “Hauts-de-France”, the ERDF program of the European Union and the “Métropole Européenne de Lille”. Chevreul Institute (FR 2638), Ministère de l’Enseignement Supérieur, de la Recherche et de l’Innovation, Hauts-de-France Region, Fonds Européen de Développement Régional (FEDER) and Major Domain of Interest (DIM) “Eco-Energy Efficiency” of Artois University are acknowledged for supporting and funding partially this work.

Funding

No fund has been received for this research study.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. WA: experimental work, investigation, writing original draft. MM and RM: theoretical work. MM: formal analysis, data curation, review. MM, MK, AN, AB, AD, MH, FB, and RD: characterization, investigation, methodology. All authors read and approved the final manuscript.

Corresponding author

Correspondence to W. Azzaoui.

Ethics declarations

Conflict of interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azzaoui, W., Medles, M., Miloua, R. et al. Rietveld refinement combined with first-principles study of Zn and Al–Zn doped CdO thin films and their structural, optical and electrical characterisations. J Mater Sci: Mater Electron 34, 1010 (2023). https://doi.org/10.1007/s10854-023-10384-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10384-z

Navigation