Log in

Time-resolved radiative recombination in black silicon

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Black silicon (b-Si) has been receiving a great deal of interest for its potential to be used in applications ranging from sensors to solar cells and electrodes in batteries due to its promising optical, electronic and structural properties. Several approaches have been used to demonstrate the possibility of producing application quality b-Si, which also exhibits light emission properties. The photoluminescence is a useful technique to identify recombination pathways and thus, enable us to optimize device quality. In this work, we report the results of the radiative recombination dynamics in b-Si produced by a technique involving thermal oxidation, photoresist coating and chlorine plasma etching. An ultrafast blue luminescence component competing with non-radiative recombination at surface defects was identified as no-phonon radiative recombination. This component involves two decay processes with a peak energy at around 480 nm, which have the fast component of about 15 ps followed by a component of around 50 ps lifetime. The emission exhibits a slow process in red spectral region with time constant of 1500 ps. When the surface is smoothed, the lifetime of carriers increased up to 4500 ps and the emission peak blue shifted indicating downsizing in dimensions. The results are correlated with transmission electron microscopy, localized vibrational modes and spectroscopic ellipsometry and interpreted through the presence of quantum confinement at the tip regions of the wires, surface defects and oxide environment surrounding the nanoscale wires.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. G.S. Oerlein, Y. Kurogi, Sidewall surface chemistry in directional etching processes. Mater. Sci. Eng. 24, 153 (1998)

    Article  Google Scholar 

  2. M. Gotza, M. Dutoit, M. Ilegems, Fabrication and photoluminescence investigation of silicon nanowire on silicon-on-insulator materials. J. Vac. Sci. Technol. B 16, 582 (1998)

    Article  CAS  Google Scholar 

  3. T. Chen, J. Si, X. Hou, S. Kanehira, K. Miura, K. Hirao, Luminescence of Black silicon fabricated by high-repetition rate femtosecond laser pulses. J. of Appl. Phys. 110, 073106 (2011)

    Article  Google Scholar 

  4. S. Kalem, P. Werner, O. Arthursson, V. Talalaev, B. Nilsson, M. Hagberg, H. Frederiksen, U. Sodervall, Black silicon with high density and high aspect ratio nano whiskers. Nanotechnology 22, 1 (2011)

    Article  Google Scholar 

  5. X. Liu et al., Black silicon: fabrication methods, properties and solar energy applications. Energy Environ. Sci. 7, 3223 (2014)

    Article  CAS  Google Scholar 

  6. S. Kontermann et al., Laser processed Black silicon for photovoltaic applications. Energy Procedia 27, 390 (2012)

    Article  CAS  Google Scholar 

  7. F. Toor et al., Nanostructured silicon via metal assisted catalyzed etch (MACE): chemistry fundamentals and pattern engineering. Nanotechnology 27, 41 (2016)

    Article  Google Scholar 

  8. P.W. Weiss, B. Bissig, T. Feurer, R. Carron, S. Buechler, A.N. Tiwari, Bulk and surface recombination properties in thin film semiconductors with different surface treatments from time-resolved photoluminescence measurements. Sci. Rep. 9, 5385 (2019)

    Article  Google Scholar 

  9. P. Lu, D. Li, P. Zhang, D. Tan, W. Mu, J. Xu, W. Li, K. Chen, Time-resolved and temperature dependent photoluminescence study on phosphorus doped Si quantum dots/SiO2 multilayers with ultra-small dot sizes. Opt. mater. Express 6, 3233 (2016)

    Article  Google Scholar 

  10. A. Serpenguzel, A. Kurt, I. Inanc, J.E. Cary, E. Mazur, Luminescence of black silicon. J. Nanophotonics 2, 021770 (2008)

    Article  Google Scholar 

  11. S. Koynov, M.S. Brandt, M. Stuttzmann, M., Black nonreflecting silicon surfaces for solar cells. Appl. Phys. Lett. 88, 203107–203111 (2006)

    Article  Google Scholar 

  12. S. Ray, S. Mitra, H. Ghosh, A. Mondal, C. Banerjee, U. Gangopadhyay, Novel technique for large area n-type black silicon solar cell by formation of silicon nanograss after diffusion process. J. Mater. Sci. Mater. Electron. 32, 2590–2600 (2021)

    Article  CAS  Google Scholar 

  13. T. Rahman, S. Boden, Optical modeling of black silicon for solar cells using effective index techniques. IEEE J. Photovoltaic 7, 1556 (2017)

    Article  Google Scholar 

  14. Y. Liu, T. Lai, H. Li, Y. Wang, Z. Mei, H. Liang, Z. Li, F. Zhang, W. Wang, A.Y. Kuznetsov, X. Du, Nanostructure formation and passivation of large-area Black Silicon for solar cell applications. Small 8, 1392–1397 (2012)

    Article  CAS  Google Scholar 

  15. Z. Zhao, B. Zhang, P. Li, W. Guo, A. Liu, Int. J. Photoenergy 2014, 683654 (2014)

    Article  Google Scholar 

  16. Y. Liu, A. Das, Z. Lin, I.B. Cooper, A. Rohatgi, C.P. Wong, Hierarchical robust textured structures for large scale self-cleaning black silicon solar cells. Nano Energy 3, 127–133 (2014)

    Article  CAS  Google Scholar 

  17. L. Yang, Y. Liu, Y. Wang, X. Li, W. Chen, Y. Hua, Q. Zhang, J. Fu, H. Liang, Z. Mei, X. Du, Black silicon: fabrication methods, properties and solar energy applications. RSC Adv. 4, 24458–24462 (2014)

    Article  CAS  Google Scholar 

  18. M.P. Jura et al., Conventionally-processed silicon nanowire solar cells demonstrating efficiency improvement over standard cells. Photovoltaic Specialist Conference (PVSC), IEEE 40th, (2014).

  19. X. Wang et al., 19.31%-efficient multicrystalline silicon solar cells using MCCE black silicon technology, Photovoltaics International 35, (2017).

  20. A.Y. Mironenko, M.V. Tutov, A.A. Sergeev, E.V. Mitsai, A.Y. Ustinov, A.Y. Zhizhchenko, D.P. Linklater, S.Y. Bratskaya, S. Juodkazis, A.A. Kuchmizhak, Ultratrace nitroaromatic vapor detection via surface-enhanced fluorescence on carbazole-terminated Black silicon. ACS Sens. 4, 2879–2884 (2019)

    Article  CAS  Google Scholar 

  21. Z. Zhang et al., Black silicon with order-disorder structures for enhanced light trap** and photothermic conversion. Nano Energy 65, 103992 (2019)

    Article  CAS  Google Scholar 

  22. J. Lv, T. Zhang, P. Zhang, Y. Zhao, S. Li, Review application of nanostructured black silicon. Nanoscale Res. Lett. 13(110), 2 (2018)

    Google Scholar 

  23. Q. Tan, F. Lu, C. Xue, W. Zhang, L. Lin, J. **ong, Nano-fabrication methods and novel applications of black silicon. Sens. Actuators, A 295, 560–573 (2019)

    Article  CAS  Google Scholar 

  24. Z. Ying et al., Monolithic perovskite/black silicon tandems based on tunnel oxide passivated contacts. Joule 6, 2644 (2022)

    Article  CAS  Google Scholar 

  25. Z. Fan et al., Recent progress of black silicon: from fabrications to applications. Nanomaterials 11, 41 (2021)

    Article  CAS  Google Scholar 

  26. K. Zidek, F. Trojánek, P. Malý, L. Ondič, I. Pelant, K. Dohnalová, L. Šiller, R. Little, B.R. Horrocks, Femtosecond luminescence spectroscopy of core states in silicon nanocrystals. Opt. Express 18, 25241 (2010)

    Article  CAS  Google Scholar 

  27. Z. Chen et al., Time-resolved photoluminescence of silicon microstructures fabricated by femtosecond laser in air. Opt. Express 21, 21329 (2013)

    Article  Google Scholar 

  28. T. Schmidt, A.I. Chizhik, A.M. Chizhik, K. Potrick, A.J. Meixner, F. Huisken, Radiative exciton recombination and defect luminescence observed in single silicon nanocrystals. Phys. Rev. B 86, 125302 (2012)

    Article  Google Scholar 

  29. K. Zidek et al., Ultrafast photoluminescence dynamics of blue-emitting silicon nanostructures. Phys. Status Solidi C 8, 979 (2011)

    Article  CAS  Google Scholar 

  30. S. Kalem et al., Optical characterization of dislocation free Ge and GeOI wafers. Mater. Sci. Semicond. Process. 9, 753 (2006)

    Article  CAS  Google Scholar 

  31. D.A. Strubbe, E.C. Johlin, T.R. Kirkpatrick, T. Buonassisi, J.C. Grosman, Stress effects on the Raman spectrum of an amorphous materials: theory and experiment on a-Si:H. Phys. Rev. B 92, 241202 (2015)

    Article  Google Scholar 

  32. S. Kalem, P. Werner, B. Nilsson, V.G. Talalaev, M. Hagberg, Ö. Arthursson, U. Södervall, Controlled thinning and surface smoothening of Silicon nanowires. Nanotechnology 20, 445303–445307 (2009)

    Article  CAS  Google Scholar 

  33. N.E. Huang et al., The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series. Proc. R. Soc. Lond. A 454, 903 (1998)

    Article  Google Scholar 

  34. J. Beom Soo et al., Effect of Auger recombination induced by donor and acceptor states on luminescence properties of silicon quantum dots/SiO2 multilayers. J. alloys Compd. 15(801), 568 (2019)

    Google Scholar 

  35. Z. Wu, J.B. Neaton, J.C. Grossman, Quantum confinement and electronic properties of tapered silicon nanowires. Phys. Rev. Lett. 100, 246804 (2008)

    Article  Google Scholar 

  36. M.A. Green, Intrinsic concentration, effective densities of states and effective mass in silicon. J. Appl. Phys. 67(6), 2944–2954 (1990)

    Article  CAS  Google Scholar 

  37. D.D.D. Ma et al., Small diameter silicon nanowire surfaces. Science 299, 1874 (2003)

    Article  CAS  Google Scholar 

  38. B.E.A. Saleh, M.C. Teich, Fundamentals of Photonics. 3rd edn. Wiley series in pure and applied optics, 760 (2019).

  39. L. Canham, Introductory lecture: origins and applications of efficient visible photoluminescence from silicon-based nanostructures. Faraday Discuss. 222, 10 (2020)

    Article  CAS  Google Scholar 

  40. T. Hildebrandt, L. Lombez, Optical and recombination properties of dislocations in cast-mono silicon from short wave infrared luminescence imaging. J. Appl. Phys. 127, 063102 (2020)

    Article  Google Scholar 

  41. U. Blumröder et al., Influence of structure geometry on THz emission from Black Silicon surfaces fabricated by reactive ion etching. Opt. Express 25, 6604 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

I thank Prof. W. Sunström for the access to Lund Laser Center and Dr. Hannas for the assistance in lifetime measurements. We thank Dr. P. Werner for HRTEM measurements and fruitful discussions.

Funding

I received infrastructure use funding from LASERLAB-EUROPE program under LLC001765. 

Author information

Authors and Affiliations

Authors

Contributions

SK designed the experiments, prepared, characterized samples and analyzed the results and wrote the manuscript.

Corresponding author

Correspondence to Seref Kalem.

Ethics declarations

Conflict of interest

The author has no competing interests to declare that are relevant to the content of this article.

Informed consent

NA

Research involving human and animal rights

This research did not involve Human Participants nor Animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalem, S. Time-resolved radiative recombination in black silicon. J Mater Sci: Mater Electron 34, 724 (2023). https://doi.org/10.1007/s10854-023-10127-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10127-0

Navigation