Log in

Characteristic analysis of the MoS2/SiO2 interface field-effect transistor with varying MoS2 layers

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Molybdenum disulfide (MoS2) is a typical semiconductor two-dimensional atomic crystal material, which has excellent physical and electrical properties and so shows great potential in Nano-electronic and optical applications. The regulation of channel characteristics is a key problem in practical application. In this paper, the MoS2 FET are studied with respect to the number of MoS2 layers in the channel. In the study of direct tunneling characteristics, the effects of image potential and no parabolic linearity of the energy band are considered. The results show that with the increase in the number of MoS2 layers, the direct tunneling current increases and the threshold voltage decreases. In addition, a MoS2 FET with a single layer MoS2 structure can obtain a low subthreshold swing (70 mV/dec). MoS2-based devices can solve the problem that the switching speed of traditional silicon-based devices cannot be effectively improved at the nanoscale. Our results show that varying MoS2 layers could regulate the channel characteristics and improve its performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The authors declare that data supporting the findings of this study are available within the article [and its supplementary information files].

References

  1. A.K.A. Lu, G. Pourtois, M. Luisier, I.P. Radu, M. Houssa, On the electrostatic control achieved in transistors based on multilayered MoS2: a first-principles study. J. Appl. Phys. 121, 044505 (2017). https://doi.org/10.1063/1.4974960

    Article  CAS  Google Scholar 

  2. F. Schwierz, J. Pezoldt, R. Granzner, Two-dimensional materials and their prospects in transistor electronics. Nanoscale 7, 8261–8283 (2015). https://doi.org/10.1039/c5nr01052g

    Article  CAS  Google Scholar 

  3. K.I. Bolotina, K.J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H.L. Stormer, Ultrahigh electron mobility in suspended graphene. Solid State Commun. 146, 351–355 (2008). https://doi.org/10.1016/j.ssc.2008.02.024

    Article  CAS  Google Scholar 

  4. M. Shin, M.J. Lee, J.H. Lee, B.H. Park, S. Lee, J.G. Park, Electrical properties of mos2 field-effect transistors in contact with layered CrPS4. J. Korean Phys. Soc. 76, 731–735 (2020). https://doi.org/10.3938/jkps.76.731

    Article  CAS  Google Scholar 

  5. A.M. van Der Zande et al., Tailoring the electronic structure in bilayer molybdenum disulfide via interlayer twist. Nano Lett. 14(7), 3869–3875 (2014). https://doi.org/10.1021/nl501077m

    Article  CAS  Google Scholar 

  6. M. Berg et al., Layer dependence of the electronic band alignment of few-layer MoS2 on SiO2 measured using photoemission electron microscopy. Phys. Rev. B 95, 235406 (2017). https://doi.org/10.1103/PhysRevB.95.235406

    Article  Google Scholar 

  7. K.F. Mak, C. Lee, J. Hone, J. Shan, T.F. Heinz, Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010). https://doi.org/10.1103/PhysRevLett.105.136805

    Article  CAS  Google Scholar 

  8. S. Huang, X. Ling, L. Liang, J. Kong, H. Terrones, V. Meunier, M.S. Dresselhaus, Probing the interlayer coupling of twisted bilayer MoS2 using photoluminescence spectroscopy. Nano Lett. 14, 5500–5508 (2014). https://doi.org/10.1021/nl5014597

    Article  CAS  Google Scholar 

  9. K. Liu, L. Zhang, T. Cao, C. **, D. Qiu, Q. Zhou, A. Zettl, P. Yang, S.G. Louie, F. Wang, Evolution of interlayer coupling in twisted molybdenum disulfide bilayers. Nat. Commun. 5, 4966 (2014). https://doi.org/10.1038/ncomms5966

    Article  CAS  Google Scholar 

  10. Y.P. VenkataSubbaiah, K.J. Saji, A. Tiwari, Atomically thin MoS2: a versatile nongraphene 2D material. Adv. Funct. Mater. 26, 2046–2069 (2016). https://doi.org/10.1002/adfm.201504202

    Article  CAS  Google Scholar 

  11. T. Li, G. Galli, Electronic properties of MoS2 nanoparticles. J. Phys. Chem. C 111, 16192–16196 (2007). https://doi.org/10.1021/jp075424v

    Article  CAS  Google Scholar 

  12. E.S. Kadantsev, P. Hawrylak, Electronic structure of a single MoS2 monolayer. Solid State Commun. 152, 909–913 (2012). https://doi.org/10.1016/j.ssc.2012.02.005

    Article  CAS  Google Scholar 

  13. A. Kuc, N. Zibouche, T. Heine, Influence of quantum confinement on the electronic structure of the transition metal sulfide TS2. Phys. Rev. B 83, 245213 (2011). https://doi.org/10.1103/physrevb.83.245213

    Article  Google Scholar 

  14. C. Ataca, H. Şahin, S. Ciraci, Stable, single-layer MX2 transition-metal oxides and dichalcogenides in a honeycomb-like structure. J. Phys. Chem. C 116, 8983–8999 (2012). https://doi.org/10.1021/jp212558p

    Article  CAS  Google Scholar 

  15. B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis, Single-layer MoS2 transistors. Nat. Nanotechnol. 6, 147–150 (2011). https://doi.org/10.1038/nnano.2010.279

    Article  CAS  Google Scholar 

  16. A. Mukhopadhyay, S. Kanungo, H. Rahaman, The effect of the stacking arrangement on the device behavior of bilayer MoS2 FETs. J. Comput. Electron. 20, 161–168 (2021). https://doi.org/10.1007/s10825-020-01636-w

    Article  CAS  Google Scholar 

  17. N. Cortés, L. Rosales, P.A. Orellana, A. Ayuela, J.W. González, Stacking change in MoS2 bilayers induced by interstitial Mo impurities. Sci. Rep. 8, 2143 (2018). https://doi.org/10.1038/s41598-018-20289-1

    Article  CAS  Google Scholar 

  18. J. Kwon, J.Y. Lee, Y.J. Yu, C.H. Lee, X. Cui, J. Honed, G.H. Lee, Thickness-dependent Schottky barrier height of MoS2 field-effect transistors. Nanoscale 9, 6151–6157 (2017). https://doi.org/10.1039/c7nr01501a

    Article  CAS  Google Scholar 

  19. W. Wu et al., Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics. Nature 514, 470–474 (2014). https://doi.org/10.1038/nature13792

    Article  CAS  Google Scholar 

  20. A. Splendiani et al., Emerging photoluminescence in monolayer MoS2. Nano Lett. 10(4), 1271–1275 (2010). https://doi.org/10.1021/nl903868w

    Article  CAS  Google Scholar 

  21. Y. Kim, T. Kim, E.K. Kim, High-performance MoS2/p+-Si heterojunction field-effect transistors by interface modulation. Nano Res. 15, 6500–6506 (2022). https://doi.org/10.1007/s12274-022-4263-0

    Article  CAS  Google Scholar 

  22. G. Arutchelvan et al., Impact of device scaling on the electrical properties of MoS2 field-effect transistors. Sci. Rep. 11, 6610 (2021). https://doi.org/10.1038/s41598-021-85968-y

    Article  CAS  Google Scholar 

  23. E. Gholinataj-Jelodar, A. Aghanejad Ahmadchally, A. Gooran-Shoorakchaly, M. Gholipour, Semi-analytical SPICE-compatible ballistic I-V model for 5 nm channel MoS2 FETs. J. Comput. Electron. 21, 1108–1115 (2022). https://doi.org/10.1007/s10825-022-01917-6

    Article  CAS  Google Scholar 

  24. M. Gholipour, A compact short-channel model for symmetric double-gate TMDFET in subthreshold region. IEEE Trans. Electron Devices 64, 3466–3469 (2017). https://doi.org/10.1109/TED.2017.2716951

    Article  CAS  Google Scholar 

  25. N.K. Singh, M. Kumari, M. Sahoo, A compact short-channel analytical drain current model of asymmetric dual-gate TMD FET in subthreshold region including fringing field effects. IEEE Access 8, 207982–207990 (2020). https://doi.org/10.1109/ACCESS.2020.3038421

    Article  Google Scholar 

  26. M. Choi, J.W. Lee, H.S. Lee, Optical and electrical characterizations of volatile do** effect originated from bilayer photoresist process in MoS2 field-effect transistors. J. Korean Phys. Soc. 81, 317–324 (2022). https://doi.org/10.1007/s40042-022-00525-8

    Article  CAS  Google Scholar 

  27. L. Zhang, H. **ng, M. Yang, Q. Dong, H. Li, S. Liu, Advances in atomic layer deposited high-κ inorganic materials for gate dielectrics engineering of two-dimensional MoS2 field effect transistors. Carbon Lett. 32, 1247–1246 (2022). https://doi.org/10.1007/s42823-022-00367-1

    Article  Google Scholar 

  28. Y.Q. Hu, P.S. Yip, C.W. Tang, K.M. Lau, Q. Li, Interface passivation and trap reduction via hydrogen fluoride for molybdenum disulfide on silicon oxide back-gate transistors. Semicond. Sci. Technol. 33, 045005 (2018). https://doi.org/10.1088/1361-6641/aaa224

    Article  CAS  Google Scholar 

  29. C. Ataca, M. Topsakal, E. Aktürk, S. Ciraci, A comparative study of lattice dynamics of three- and two-dimensional MoS2. J. Phys. Chem. C 115(33), 16354–16361 (2011). https://doi.org/10.1021/jp205116x

    Article  CAS  Google Scholar 

  30. L.P. Feng, J. Su, S. Chen, Z.T. Liu, First-principles investigations on vacancy formation and electronic structures of monolayer MoS2. Mater. Chem. Phys. 148, 5–9 (2014). https://doi.org/10.1016/j.matchemphys.2014.07.026

    Article  CAS  Google Scholar 

  31. S. Bhattacharyya, A.K. Singh, Semiconductor-metal transition in semiconducting bilayer sheets of transition-metal dichalcogenides. Phys. Rev. B 86, 75454 (2012). https://doi.org/10.1103/PhysRevB.86.075454

    Article  CAS  Google Scholar 

  32. S.W. Han, H. Kwon, S.K. Kim, S. Ryu, W.S. Yun, D.H. Kim, J.H. Hwang, J.S. Kang, J. Baik, H.J. Shin, S.C. Hong, Band-gap transition induced by interlayer van der Waals interaction in MoS2. Phys. Rev. B 84, 045409 (2011). https://doi.org/10.1103/PhysRevB.84.045409

    Article  CAS  Google Scholar 

  33. A. Dashora, U. Ahuja, K. Venugopalan, Electronic and optical properties of MoS2 (0001) thin films: feasibility for solar cells. Comput. Mater. Sci. 69, 216–221 (2013). https://doi.org/10.1016/j.commatsci.2012.11.062

    Article  CAS  Google Scholar 

  34. R. Ganatra, Q. Zhang, Few-layer MoS2: a promising layered semiconductor. ACS Nano 8(5), 4074–4099 (2014). https://doi.org/10.1021/nn405938z

    Article  CAS  Google Scholar 

  35. H.X. Li, A.M. Ji, C.Y. Zhu, L. Cui, L.F. Mao, Layer-dependent bandgap and electrical engineering of molybdenum disulfide. J. Phys. Chem. Solids 139, 109331 (2020). https://doi.org/10.1016/j.jpcs.2020.109331

    Article  CAS  Google Scholar 

  36. M.M. Furchi, D.K. Polyushkin, A. Pospischil, T. Mueller, Mechanisms of photoconductivity in atomically thin MoS2. Nano Lett. 14, 6165–6170 (2014). https://doi.org/10.1021/n1502339q

    Article  CAS  Google Scholar 

  37. C.G. Van de Walle, R.M. Martin, Theoretical study of band offsets at semiconductor interfaces. Phys. Rev. B 35, 8154–8165 (1987). https://doi.org/10.1103/PhysRevB.35.8154

    Article  Google Scholar 

  38. Y. Ando, T. Itoh, Calculation of transmission tunneling current across arbitrary potential barriers. J. Appl. Phys. 61, 4 (1987). https://doi.org/10.1063/1.338082

    Article  Google Scholar 

  39. M. Rudan, Physics of Semiconductor Devices (Springer, New York, 2018). https://doi.org/10.1007/978-3-319-63154-7

    Book  Google Scholar 

  40. L. Mao, C. Tan, M. Xu, The effect of image potential on electron transmission and electric current in the direct tunneling regime of ultra-thin MOS structures. Microelectron. Reliab. 41, 927–931 (2001). https://doi.org/10.1016/S0026-2714(01)00037-3

    Article  Google Scholar 

  41. J. Lee, C.B. Su, Near ballistic transport in a nonparabolic-band structure for n- and p-GaAs. Electron Devices IEEE Trans. 29, 933–935 (1982). https://doi.org/10.1109/t-ed.1982.20805

    Article  Google Scholar 

  42. C.R. Pidgeon, R.N. Brown, Interband magneto-absorption and faraday rotation in InSb. Phys. Rev. 146(2), 575–538 (1966). https://doi.org/10.1103/physrev.146.575

    Article  CAS  Google Scholar 

  43. P.A. Sandborn, A. Rao, An assessment of approximate nonstationary charge transport models used for GaAs device modeling. IEEE Trans. Electron Devices 36(7), 1244–1253 (1989). https://doi.org/10.1109/16.30929

    Article  Google Scholar 

  44. V.M. Polyakov, F. Schwierz, Influence of band structure and intrinsic carrier concentration on the THz surface emission from InN and InAs. Semicond. Sci. Technol. 22(9), 1016–1020 (2007). https://doi.org/10.1088/0268-1242/22/9/007

    Article  CAS  Google Scholar 

  45. M. Lenzlinger, E.H. Snow, Fowler-Nordheim tunneling into thermally grown SiO2. J. Appl. Phys. 40, 278 (1969). https://doi.org/10.1063/1.1657043

    Article  CAS  Google Scholar 

  46. J.H. Kim, T.H. Kim, H. Lee, Y.R. Park, W. Choi, C.J. Lee, Thickness-dependent electron mobility of single and few-layer MoS2 thin-film transistors. AIP Adv. 6, 065106 (2016). https://doi.org/10.1063/1.4953809

    Article  CAS  Google Scholar 

  47. M.B. Barron, Low level currents in insulated gate field effect transistors. Solid State Electron. 15(3), 293–302 (1972). https://doi.org/10.1016/0038-1101(72)90084-6

    Article  Google Scholar 

  48. W.M. Gosney, Subthreshold drain leakage currents in MOS field-effect transistors. IEEE Trans. Electron Devices 19(2), 213–219 (1972). https://doi.org/10.1109/T-ED.1972.17399

    Article  CAS  Google Scholar 

  49. V. Mishra et al., Screening in ultrashort (5 nm) channel MoS2 transistors: a full-band quantum transport study. IEEE Trans. Electron Devices 62(8), 2457–2463 (2015). https://doi.org/10.1109/TED.2015.2444353

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant [Grant no. 61774014]; the Financial aid for the “QINGLAN project” in Jiangsu Province[Grant no. 20210310]; the Special fund project for the transformation of scientific and technological achievements in Jiangsu Province [Grant no. BA2021077]; the Natural Science Foundation Surface Project of the Jiangsu Suqian of China [Grant no. K202013]; and the School-level Scientific Research and Innovation Team of Suqian University [Grant no. 2021td02].

Funding

Funding was provided by Innovative Research Group Project of the National Natural Science Foundation of China (Grant no. 61774014), the “QINGLAN project” in Jiangsu Province (Grant no. 20210310), the Special fund project for the transformation of scientific and technological achievements in Jiangsu Province (Grant no. BA2021077), the Natural Science Foundation Surface Project of the Jiangsu Suqian of China (Grant no. K202013), Science and Technology Support Plan for Youth Innovation of Colleges and Universities of Shandong Province of China (Grant no. 2021td02).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by HL, YL, HJ and LM. The first draft of the manuscript was written by YN and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Haixia Li.

Ethics declarations

Competing interests

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Li, Y., Jiang, H. et al. Characteristic analysis of the MoS2/SiO2 interface field-effect transistor with varying MoS2 layers. J Mater Sci: Mater Electron 34, 427 (2023). https://doi.org/10.1007/s10854-023-09869-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-09869-8

Navigation